Способ измерения скорости звука

 

Изобретение относится к способам измерения акустических свойств звукопроводящих сред, в частности к измерению скорости звука. Целью изобретения является расширение диапазона исследуемых объектов и упрощение способа. В способе дополнительно измеряют параметры сигнала, прошедшего через объект в направлении, перпендикулярном направлению излучения, фиксируют частоту f1 соответствующую максимуму амплитуды гармонического сигнала в двух взаимно перпендикулярных направлениях, фиксируют частоту f2 соответствующую максимальной амплитуде сигнала, прошедшего через объект в направлении, перпендикулярном излучению, и минимальной амплитуде сигнала в направлении излучения, и определяют скорость продольных волн vwp из соотношения vпр= 2hf1 и скорость поперечных волн vсдв из соотношения vсдв = f2h, где h - толщина объекта в направлении излучения. 1 ил., 1 табл.

Изобретение относится к технической физике, а именно к способам измерения акустических свойств звукопроводящих сред, в частности к измерению скорости звука.

Известен способ измерения скорости звука, выбранный за прототип, заключающийся в прозвучивании плоскопараллельного образца импульсно-гармоническим сигналом с изменяющейся частотой заполнения, анализе параметров прошедшего и отраженного сигналов, определении частот, соответствующих продольным и поперечным волнам, и, зная толщину образца, вычислении продольной и поперечной скоростей звука.

Однако этот способ нельзя использовать для всех сред (например, трещинноватых, слабых, пористых горных пород). Кроме того, имеем место некоторая сложность реализации метода за счет юстировки измерительной установки при высокой точности измерений.

Цель изобретения расширение диапазона исследуемых объектов и упрощение способа.

Поставленная цель достигается тем, что дополнительно измеряют параметры сигнала, прошедшего через объект в направлении, перпендикулярном направлению излучения, фиксируют частоту f1, соответствующую максимуму амплитуды гармонического сигнала в двух взаимно перпендикулярных направлениях, фиксируют частоту f2, соответствующую максимальной амплитуде сигнала, прошедшего через объект в направлении, перпендикулярном излучению, и минимальной амплитуде сигнала в направлении излучения, и определяют скорость продольных волн Vпр из соотношения Vпр=2 h f1 и скорость поперечных волн Vсдв из соотношения Vсдв= h f2, где h толщина объекта в направлении излучения.

Способ поясняется блок-схемой, приведенной на чертеже. Она содержит образец 1, излучающий электроакустический преобразователь 2, соосный излучающему приемный пьезокерамический преобразователь 3, ортогональный излучающему приемный пьезокерамический преобразователь 4, генератор 5 гармонических сигналов, двухканальный осциллограф 6, частотомер 7.

Физические основы предлагаемого способа заключаются в следующем.

Частота f1, являющаяся частотой продольных звуковых колебаний, соответствует известному эффекту монохроматора. Объясняется эффект монохроматора тем, что за счет интерференции происходит увеличение прохождения поля через образец по сравнению с прохождением поля на других частотах.

Частота f2, являющаяся частотой поперечных звуковых колебаний, соответствует режиму стоячих волн, однако в отличие от режима монохроматора собственное поле в пластине находится с внешним полем в противофазе. Противофазность собственного поля возбуждающему объясняется дифференцирующим действием приповерхностных низкоскоростных зон слоя-резонатора. Для идеального плоскопараллельного образца на частоте f2 отсутствует прохождение поля (наблюдается только ортогональный процесс), в чем и заключается эффект резонансного акустического поглощения. Так как в предлагаемом изобретении образец не является идеально плоскопараллельным, то на соосном приемнике наблюдается неполное уменьшение амплитуды сигнала.

Способ осуществляют следующим образом.

Образец 1, имеющий толщину h, прозвучивается с помощью излучающего преобразователя 2 2 (например, пьезокерамический диск из ЦТС-19 с собственной частотой 1,15 МГц). Приемные преобразователи, например, аналогичные излучающему преобразователю, расположены соосно и ортогонально излучающему преобразователю 2. Генератор 5 (например, типа ГЗ-117) возбуждает излучающий преобразователь 2 гармоническим сигналом изменяющейся частоты. С приемных преобразователей 3 и 4 принимаемые сигналы поступают на двухканальный осциллограф 6. Плавно увеличивая частоту гармонического сигнала, с помощью частотомера 7 фиксируют частоту f1, на которой амплитуда сигналов на преобразователях 3 и 4 максимальна. Увеличивая с помощью генератора 5 частоту гармонического сигнала, по частотомеру 7 определяют частоту f2, на которой амплитуда сигнала на преобразователе 3 минимальна, а амплитуда сигнала на преобразователе 4 максимальна. Определив толщину образца h, вычисляют величины продольной Vпр и поперечной Vсдв фазовых скоростей звука в образце из выражений Vпр=2 h f1; Vсдв=h f2.

В качестве примера в таблице приведены результаты определения Vпр и Vсдв в отдельных горных породах.

Использование предлагаемого способа позволяет упростить определение продольной и поперечной скоростей звука в широком диапазоне исследуемых сред, а особенно в хрупких, трещинноватых, пористых средах, к которым относятся большие классы горных пород.

Формула изобретения

Способ определения скорости продольной и поперечной звуковых волн в плоскопараллельных объектах, заключающийся в том, что с одной стороны объекта излучают перпендикулярно к его поверхности гармонические ультразвуковые колебания, плавно изменяют частоту излучаемых колебаний и измеряют параметры колебаний, прошедших через объект в направлении излучения, отличающийся тем, что, с целью расширения диапазона исследуемых объектов и упрощения способа, дополнительно измеряют параметры колебаний, прошедших через объект в направлении, перпендикулярном направлению излучения, фиксируют частоту f1, соответствующую максимуму амплитуды гармонических колебаний в двух взаимно перпендикулярных направлениях, и фиксируют частоту f2, соответствующую максимальной амплитуде колебаний, прошедших через объект в направлении, перпендикулярном излучению, и минимальной амплитуде колебаний в направлении излучения, и определяют скорость продольных волн (vпр из соотношения vпр 2 h f1 и скорость поперечных волн vсдв из соотношения vсдв h f2, где h толщина объекта в направлении излучения.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к акустическим измерениям и может быть использовано для определения скорости звука в воде при исследованиях мирового океана

Изобретение относится к технике акустического контроля и может быть использовано для контроля скорости распространения акустических колебаний в жидких средах

Изобретение относится к ультразвуковой технике и может быть использовано для измерения скорости ультразвука в пищевой промышленности, медицине и других отраслях народного хозяйства

Изобретение относится к ультразвуковым измерениям и может быть использовано при исследовании физико-механических свойств материалов

Изобретение относится к акустическим измерениям и может быть использовано при контроле напряженного состояния массива горных пород

Изобретение относится к акустическим измерениям и может быть использовано в гидрофизических исследованиях океана

Изобретение относится к способам физических измерений и может быть использовано для акустических измерений, для снятия реверберационных характеристик помещений при работе с сигналами звуковых частот

Изобретение относится к измерительной технике и может быть использовано для определения вертикального распределения скорости звука при океанологических исследованиях

Изобретение относится к области гидроакустики и может быть использовано для определения зависимости скорости звука от координаты, например по глубине океана

Изобретение относится к технике акустических измерений

Изобретение относится к измерительной технике и может быть использовано при измерении параметров звуковых колебаний

Изобретение относится к способам измерения скорости распространения ультразвуковых волн в кусках горных пород и может быть использовано в нефтедобывающей промышленности непосредственно в процессе бурения скважин

Изобретение относится к технике измерения свойств материалов, в частности светопрозрачных диэлектриков и пьезоэлектриков, и может быть использовано для измерения скорости ультразвука в упомянутых материалах на сверхвысоких частотах

Изобретение относится к ультразвуковой технике и может быть использовано в тех областях науки и техники, где необходимо знание скорости ультразвука в жидких средах
Наверх