Шихта для получения кальцийвольфраматного рентгенолюминофора

 

Сущность изобретения: шихта содержит следующие компоненты, мас.%: кальций хлористый 0,5 - 6; гексагидрат магния хлористого в расчете на безводную соль 0,1 - 5; очищенный вольфрамат кальция остальное. К очищенному вольфрамату кальция добавляют деминерализованную воду, раствор CaCl2 и раствор MgCl2. Полученную шихту сушат до состояния пыления и прокаливают на воздухе при 900°С 1 ч. Характеристики люминофора: относительная интенсивность 102 - 132% ; относительное послесвечение 14 - 99%; средний размер частиц 3,8 - 5,0 мкм. 1 табл.

Изобретение относится к химической промышленности, а именно к производству рентгенолюминофоров для усиливающих рентгеновских экранов.

Основными параметрами усиливающих рентгеновских экранов являются чувствительность к рентгеновскому возбуждению, разрешающая способность и контрастность изображения. Эти параметры определяются люминесцентными и дисперсными свойствами люминофора.

Известен способ получения кальцийвольфраматного люминофора, включающий получение вольфрамата кальция осаждением из растворов хлористого кальция и вольфрамата аммония, отмывку осадка от аморфного вольфрамата кальция и смешивание с минерализатором кальцием хлористым [1] Люминофор имеет высокую эффективность рентгенолюминесценции, но широкий спектр распределения частиц по размерам. Средний размер частиц 8-9 мкм.

Известно использование в качестве минерализаторов хлоридов щелочных металлов. Вольфрамат кальция по известному способу получают путем осаждения из щелочного раствора вольфрамовой кислоты и водного раствора кальция хлористого [2] Средний размер частиц 6 мкм: < 3 мкм 0,5-1,0% 3-12 мкм 70-75% 12-18 мкм 15-20% Использование большого количества минерализатора (7-50% к массе CaWO4) требует размола шихты перед прокалкой. В результате получаются неудовлетворительные результаты по интенсивности люминесценции и послесвечению.

Известно использование в шихте кальцийвольфраматного люминофора смеси минерализатора хлористого калия (KCl) с соединениями ванадия с целью уменьшения послесвечения [3] Однако при добавлении в шихту солей ванадия уменьшается эффективность рентгенолюминесценции порядка на 20-30% при введении соединений ванадия 510-5-210-4 г/г CaWO4.

Кроме того, наблюдается широкий спектр распределения частиц по размерам.

Наиболее близкой по качественно-количественному и достигаемому эффекту к изобретению является шихта кальцийвольфраматного рентгенолюминофора, включающая очищенный вольфрамат кальция 20% CaCl2H2O и 110-3-110-1% к массе CaWO4 хлоридов щелочных металлов (NaCl, KCl, LiCl).

Большое количество кальция хлористого в шихте приводит к расплаву при прокалке, что затрудняет процесс выгрузки.

С увеличением содержания хлоридов металлов средний размер частиц уменьшается, а интенсивность люминесценции остается на прежнем уровне. Спектр распределения частиц сужается, но в недостаточной степени, остается большое количество частиц > 10 мкм.

Целью изобретения является повышение интенсивности рентгенолюминесценции, улучшение грансостава, уменьшение послесвечения люминофора.

Улучшение грансостава характеризуется сужением спектра распределения частиц по размерам, уменьшением среднего размера частиц до размеров, не превышающих 5 мкм.

Уменьшение послесвечения характеризуется величиной запасаемой светосуммы через 130 с.

Шихта для получения кальцийвольфраматного рентгенолюминофора по изобретению содержит очищенный вольфрамат кальция, кальций хлористый и гексагидрат магния хлористого при следующем соотношении этих компонентов, мас. Кальций хлористый 0,5-6,0 Гексагидрат магния хлористого в расчете на безводную соль 0,1-5,0 Очищенный вольф- рамат кальция Остальное Вольфрамат кальция получают осаждением из щелочного раствора вольфрамовой кислоты и раствора кальция хлористого. Исходные растворы предварительно очищают магнезиальной смесью, включающей MgCl26H2O, NH4Cl и NH4OH. Осажденный вольфрамат кальция отмывают дистиллированной водой от маточного раствора до отрицательной реакции на содержание Cl-ионов в промывных водах. Содержание CaCl2 в отмытом CaWO4 не превышает 310-6 мас. к массе CaWO4. Гексагидрат магния хлористого является минерализатором и регулирует рост кристаллов за счет образования на поверхности частиц вольфрамата кальция оксида магния в результате термического гидролиза.

При взаимодействии хлорида магния с собственной кристаллизационной водой образуется большое количество кислоты HCl, которая защищает шихту от кислорода, что способствует увеличению эффективности рентгенолюминесценции и уменьшению послесвечения.

Благодаря уменьшению содержания в шихте кальция хлористого продукт после термической обработки имеет порошкообразный вид, что упрощает процесс отмывки от плавней.

Сущность изобретения заключается в том, что готовят шихту, состоящую из очищенного вольфрамата кальция, кальция хлористого и гексагидрата магния хлористого в соответствии с указанным выше содержанием в шихте. Шихту сушат до состояния пыления, загружают в контейнер из кварца и прокаливают на воздухе при 700-900оС в течение 1,5-3 ч. Полученный люминофор имеет средний размер частиц не больше 5 мкм с узким распределением частиц по размерам и при достаточно высокой эффективности рентгенолюминесценции имеет малое послесвечение.

Изобретение иллюстрируется далее примерами. В качестве сравнения приведен также пример по прототипу.

П р и м е р 1 (по прототипу). К 100 г очищенного вольфрамата кальция добавляют 20 г CaCl2H2O и 50 мл деминерализованной воды и 0,1 г NaCl в виде водного раствора. Смесь тщательно перемешивают и сушат. Полученную шихту загружают в тигель из кварца и прокаливают при 740оС в течение 4 ч. Полученный люминофор отгоняют горячей деминерализованной водой.

Интенсивность и послесвечение люминофора принято за 100% Средний размер частиц 9,3 мкм. Содержание частиц размером < 3 мкм 5% > 10 мкм 25% П р и м е р 2. К 100 г очищенного вольфрамата кальция добавляют 50 мл деминерализованной воды, 6 мл раствора CaCl2 концентрации 332 г/л (2% CaCl2 к массе CaWO4) и 20 мл раствора MgCl2 концентрации 250 г/л (5% MgCl2 к весу CaWO4). Полученную шихту сушат при 120оС до состояния пыления, загружают в тигель из кварца, закрывают крышкой и прокаливают на воздухе при 900оС в течение 1 ч.

Охлажденный люминофор отмывают водой и сушат при 120оС. Относительная интенсивность рентгенолюминесценции 125% послесвечения 50% Дополнительные примеры приведены в таблице.

При увеличении концентрации кальция хлористого выше 6 мас. шихта не рассыпается и для ее загрузки для прокалки в контейнер необходим размол. Люминофор, полученный из такой шихты, имеет достаточно высокую эффективность рентгенолюминесценции, но и высокое послесвечение. Средний размер зерна больше 10 мкм, что не позволяет этот люминофор применять в рентгеновских экранах с высоким разряжением и контрастностью.

С уменьшением концентрации кальция хлористого эффективность рентгенолюминесценции уменьшается и при концентрации 0,4 мас. к массе вольфрамата кальция его интенсивность рентгенолюминесценции составляет 98% Оптимальная концентрация кальция хлористого в шихте 0,5-6 мас. при которой эффективность рентгенолюминесценции составляет 102-132% от люминофора, полученного по прототипу.

Магний хлористый в результате гидролиза образует хлористый водород и оксид магния. Образующийся хлористый водород, как известно, способствует росту эффективности рентгенолюминесценции, а оксид магния препятствует росту кристаллов рентгенолюминофора. Все это позволяет получать кальций вольфраматный рентгенолюминофор с высокой эффективностью со средним размером частиц не больше 5 мкм. При концентрации хлористого магния меньше 0,05 мас. его действие практически незначительно и резко повышается как средний размер частиц, так и послесвечение. При концентрации хлористого магния выше 5 мас. интенсивность рентгенолюминесценции меньше 100%
Таким образом изобретение позволяет повысить эффективность рентгенолюминесценции на 2-32% снизить послесвечение до 14-27% Улучшение грансостава, заключающееся в уменьшении среднего размера частиц до 5 мкм и сужение спектра распределения частиц по размерам, позволяет повысить чувствительность экрана к рентгеновскому возбуждению, разрешающую способность и контрастность изображения усиливающих рентгеновских экранов.


Формула изобретения

ШИХТА ДЛЯ ПОЛУЧЕНИЯ КАЛЬЦИЙВОЛЬФРАМАТНОГО РЕНТГЕНОЛЮМИНОФОРА, включающая очищенный вольфрамат кальция, кальций хлористый и хлорид другого металла, отличающаяся тем, что, с целью повышения интенсивности рентгенолюминесценции, улучшения грансостава и уменьшения послесвечения рентгенолюминофора, она содержит в качестве хлорида металла гексагидрат магния хлористого при следующем соотношении компонентов, мас.

Кальций хлористый 0,5 6
Гексагидрат магния хлористого в расчете на безводную соль 0,1 5
Очищенный вольфрамат кальция Остальное

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к квантовой оптике и может быть использовано в светотехнике, медицинском и электронном приборостроении

Изобретение относится к материалам квантовой электроники и может найти применение в качестве активных сред низкопороговых твердотельных лазеров с оптической накачкой, в устройствах информатики для отображения информации

Изобретение относится к материалам квантовой электроники и может найти применение в качестве активных сред низкопороговых твердотельных лазеров с оптической накачкой, в устройствах информатики для отображения информации

Изобретение относится к шихте для получения люминофора желтого цвета свечения на основе ванадата лантаноида, содержащего рубидий, используемого Для изготовления люминесцентных ламп

Изобретение относится к люминесцентным составам для измерения низких температур дистанционным способом

Изобретение относится к технологии люминофоров, а именно к люминесцентному материалу на основе оксидов цезия и ванадия, используемому в газоразрядных лампах и экранах электронно-лучевых приборов , и к способу его получения

Изобретение относится к технологии тоикопленочных люминофоров и позволяет увеличить выход люминесценции и интенсивность свечения люминофора

Изобретение относится к технологии люминофоров, а именно к способу получения люминофора синего цвета свечения на основе силиката стронция-магния, активированного европием, используемого при производстве сцинтилляционных детекторов

Изобретение относится к технологии люминофоров и позволяет повысить яркость и длительность послесвечения люминофора зеленого цвета свечения на основе фторида кальция и алюминия, активированного марганцем и ионом щелочного металла

Изобретение относится к технологии получения люминофоров и позволяет повысить чувствительность и снизить интенсивность люминесценции низкотемпературного пика .термолюминофора на основе сульфата кальция, активированного диспрозием

Изобретение относится к люминесцентным составам красного цвета свечения, используемым для визуализации света ультрафиолетового диапазона, рентгеновского и электронного излучения

Изобретение относится к области создания люминесцентных наноструктурных композиционных керамических материалов на основе альфа-оксида алюминия и алюмомагниевой шпинели и может быть использовано при разработке светоизлучающих и светосигнальных устройств (например, светофоров), излучающих определенный цветовой тон видимого спектра

Изобретение относится к радиационной физике твердого тела, а именно к веществам (детекторам), предназначенным для люминесцентоной дозиметрии ионизирующих излучений, и может быть использовано в персональной и клинической дозиметрии, при мониторинге радиационной обстановки на различных объектах

Изобретение относится к области люминофоров, применяемых для изготовления светодиодных систем, включая органические светоизлучающие OLED системы с белым спектром свечения, а также люминофоров, используемых для изготовления индикаторов фотонного и корпускулярного излучения и рентгеновских люминесцентных экранов

Изобретение относится к детектированию ионизирующего излучения, а именно к люминофорам для термолюминесцентной дозиметрии и может быть использовано в индивидуальной и клинической дозиметрии, в дозиметрии окружающей среды, в космических исследованиях, в дозиметрии реакторов, ускорителей и других источников смешанного излучения, включающего быстрые нейтроны или тяжелые заряженные частицы и гамма-излучение

Изобретение относится к детектированию ионизирующего излучения, а именно к люминофорам для термолюминесцентной дозиметрии и может быть использовано в индивидуальной и клинической дозиметрии, в контроле радиационной обстановки на ядерных реакторах, ускорителях, в лабораториях и производствах с источниками тяжелых заряженных частиц, быстрых нейтронов и смешанного гамма-нейтронного излучения
Наверх