Способ определения пористости материалов

 

Использование: для определения пористости материала. Сущность изобретения: способ состоит в том, что образец материала высушивают, насыщают сорбатом, воздействуют на образец световым излучением через оптический элемент под углом, превышающим угол полного внутреннего отражения, и по изменению интенсивности отраженного в процессе насыщения образца сорбатом излучения определяют пористость материала, при этом между оптическим элементом и образцом материала размещают слой вспомогательного пористого материала, обладащего более высокой, чем исследуемый материал, молекулярно-капиллярной впитываемостью и имеющего толщину не менее глубины проникновения в него светого излучения. 4 ил.

Изобретение относится к исследованию физико-химических свойств материалов и может быть использовано в ряде областей для обнаружения и количественной оценки эффективного сечения сквозных пор, их размера и распределения по размерам в листовых материалах, в том числе в полимерных пленках, применяемых в электронной технике.

Известен способ определения сквозной пористости проницаемых тел, основанный на продавливании через пористое тело газа под давлением [1] Недостатком данного способа является низкая точность определяемых параметров, поскольку в основе математических расчетов лежит необходимость измерения давления, что не обеспечивает нужной точности. Кроме того, при продавливании газа под давлением может происходить повреждение пористого тела, если его механическая прочность низкая. Этот факт не позволяет применять указанный метод к очень тонким (толщиной менее 1 мкм) пленкам.

Наиболее близким к заявляемому по технической сущности и достигаемому результату является способ определения эффективной пористости мембраны, согласно которому на предварительно высушенный исследуемый образец (мембрану) через оптический элемент воздействуют светом под углом, превышающим угол полного внутреннего отражения образца, одновременно насыщают образец сорбатом смачивающей жидкостью и измеряют изменение интенсивности отраженного от поверхности образца излучения во времени до полного насыщения образца, по которому определяют пористость материала [2] Недостатком известного способа является его недостаточная точность, обусловленная следующим. Измеряется интенсивность излучения, отраженного от поверхности образца, контактирующей с оптическим элементом, а сорбат проникает в образец с противоположной поверхности. Сорбат проникает в поры, достигает противоположной поверхности и изменяет отраженное от этой поверхности излучение, по которому определяется пористость. Однако сорбат смачивающая жидкость, пройдя через поры, не удерживается в них, а растекается по поверхности образца и отраженное излучение уже не отражает истинного значения пористости, оно завышено. Известный способ позволяет определять лишь эффективное сечение пор, но не позволяет определить распределение пор по размерам.

Задачей предлагаемого способа является повышение точности и расширение диапазона определяемых параметров пористости: распределение пор по размерам, эффективное сечение сквозных пор.

Сущность изобретения заключается в том, что в способе определения пористости материала, включающем воздействие света на предварительно высушенный образец материала через оптический элемент под углом, превышающим угол полного внутреннего отражения, и одновременно насыщение образца сорбатом, сопровождаемое измерением изменения интенсивности отраженного излучения во времени вплоть до полного насыщения образца, по которому определяют пористость материала, между оптическим элементом и исследуемым образцом размещают слой вспомогательного пористого материала, обладающего более высокой, чем исследуемый материал, молекулярно-капиллярной впитываемостью, толщина вспомогательного слоя не меньше глубины проникновения в него светового излучения, и измеряют интенсивность отраженного излучения в виде спектра нарушенного полного внутреннего отражения (НПВО) вспомогательного материала в области полосы поглощения сорбата.

Определение пористости материала по отраженному излучению при воздействии света на его образец через оптический элемент НПВО известно [2] При этом определяется сквозная пористость материала, но с погрешностью, которая объясняется искажением отраженного излучения из-за растекания сорбата по поверхности образца. В заявляемом способе точность повышается за счет того, что измеряется интенсивность отраженного излучения не от поверхности исследуемого образца, а от слоя вспомогательного пористого материала, плотно прилегающего к исследуемому образцу, причем только при условии, что вспомогательный материал выбирается из условия его более высокой, чем у исследуемого материала, молекулярно-капиллярной впитываемостью, а толщина слоя вспомогательного материала должна быть не меньше глубины проникновения в него светового излучения. Это исключает искажение интенсивности отраженного излучения, возникающее в способе-прототипе от растекания смачивающей жидкости по поверхности образца. Заявляемый способ позволяет не только повысить точность, но и расширить диапазон определяемых параметров пористости, тогда как обычно расширение диапазона исследуемых параметров влечет за собой снижение точности. Это стало возможно благодаря тому, что, воздействуя на образец световым излучением через оптический элемент и плотно прилегающий к образцу слой вспомогательного пористого материала под углом, превышающим угол полного внутреннего отражения, при толщине вспомогательного слоя не меньше глубины проникновения в него светового излучения, способ позволяет измерять интенсивность отраженного излучения в виде спектра нарушенного полного внутреннего отражения вспомогательного материала в области поглощения сорбата, что расширяет диапазон определяемых параметров пористости.

На фиг. 1 изображена принципиальная схема проведения эксперимента; на фиг. 2 зависимость изменения коэффициента отражения R от времени насыщения t; на фиг. 3 графическая зависимость изменения объемной доли сорбата от насыщения; на фиг. 4 гистограмма распределения пор по размерам.

Способ осуществляется следующим образом.

Для проведения эксперимента предварительно выбирают вспомогательный материал и сорбат. При этом необходимо выбрать такой вспомогательный материал, поры которого за счет молекулярно-капиллярных сил поглощали бы молекулы сорбата. При этом толщина слоя вспомогательного материала должна быть не меньше глубины проникновения светового излучения dp в слой вспомогательного материала.

Величина глубины проникающего излучения определяется по формуле dp= где 1 /n1 длина волны излучения; n1 показатель преломления призмы; n2 показатель преломления материала; угол падения излучения на границу.

В качестве системы сорбат вспомогательный материал могут служить хлопковая (или другая) бумага пары воды, микропористая пленка SiO2 пары воды, бумага пары хлороформа и пр.

С рабочей поверхностью элемента НПВО 1 приведен в контакт слой вспомогательного материала 2 (напылен, намазан или прижат). Полученную систему приводят в контакт с исследуемым образцом 3 со стороны слоя вспомогательного материала 2. Источником 4 светового излучения облучают образец 3 через элемент НПВО 1 и слой вспомогательного материала 2 под углом > = are sin n21, где n21 Затем всю систему элемент НПВО 1 слой вспомогательного материала 2 образец 3 помещают в кювету, содержащую сорбат 5 в жидком или газообразном состоянии, и одновременно начинают измерять спектр нарушенного полного внутреннего отражения вспомогательного материала 2 в области поглощения сорбата приемником 6 отраженного излучения. Под действием сил молекулярно-капиллярной впитываемости слой вспомогательного материала 2 пропитывается молекулами сорбата 5, проходящими через сквозные поры исследуемого образца 3, до полного насыщения. По мере заполнения пор вспомогательного материала 2 сорбатом 5 уменьшается коэффициент отражения в области полосы поглощения сорбаты до установившегося значения, характерного для насыщенного слоя вспомогательного материала 2. В результате проведенного эксперимента получают кривую зависимости изменения коэффициента отражения R от времени насыщения R f(t) (см. фиг. 2). По ней рассчитывают объемную долю сорбата 5, прошедшего сквозь поры исследуемого образца 3 и сорбированного слоем вспомогательного материала 2. Расчет объема пор образца 3 из объемной доли сорбата 5 производится по известной методике.

По полученным из расчета данным строят кривую изменения объемной доли сорбата от времени насыщения и проводят графическую обработку кривой, как показано на фиг. 3.

При этом за единицу времени t через исследуемый образец 3 проходит объемная доля сорбата 5, равная V. Принимая общее количество сорбата 5, находящегося за образцом 3, равным V1, получаем dt lnVo-lnV1= t тогда Vo V1e - t, где Vo объемная доля сорбата, прошедшего через образец; коэффициент, характеризующий прохождение сорбата через поры, определенного радиуса, определяется методом моделирования.

Тогда вся кривая разбивается на участки, каждый из которых характеризуется количеством сорбата, прошедшим сквозь поры определенного радиуса. Так промежуток времени AB изменения объемной доли сорбата характеризуется коэффициентом , соответствующим некоторому радиусу r12, реальный размер которого лежит в пределах от r1 до r2, при этом r12 . Число n12 представляет число пор радиуса r12, через которые в интервале AB проникает столько сорбата, сколько через все реальные поры радиусом от r1 до r2. Так как интервалы по оси абсцисс определяются равными количествами прошедшего сквозь образец сорбата, они должны соответствовать одинаковой разнице в размерах (радиусе) пор.

Разбивая таким образом всю кривую и рассчитывая реальный радиус пор и их определяющее количество проходящего сорбата за единицу времени, получают гистограмму распределения пор по размерам, как показано на фиг. 4.

Пример определения пористости поликарбонатной пленки.

Вспомогательный материал фильтровальную бумагу и образец поликарбонатной пленки толщиной 10 мкм, высушивают до постоянного веса в сушильном шкафу при 120оС. Фильтровальную бумагу приводят в контакт с поверхностью элемента НПВО с одной стороны и исследуемой поликарбонатной пленкой с другой, измеряют спектр НПВО фильтровальной бумаги в области поглощения воды. Образец приводят в контакт с поверхностью воды, находящейся в камере насыщения, и начинают измерять изменение спектра НПВО фильтровальной бумаги в зависимости от времени до полного насыщения фильтровальной бумаги молекулами воды. После этого проводят расчеты концентрации прошедшего сквозь поры образца сорбата в зависимости от времени.

Была определена пористость поликарбонатной пленки толщиной 0,5 мкм. Поскольку поликарбонат обладает низкой гигроскопичностью, в качестве сорбата для определения пористости пленки используют водяные поры, что определяет выбор в качестве слоя вспомогательного материала фильтровальной бумаги. Толщина слоя фильтровальной бумаги превышает глубину проникновения в нее светового излучения 0,2 мкм и составляет 0,5 мкм. На систему воздействуют инфракрасным излучением под углом (см. фиг. 1), превышающим угол полного внутреннего отражения и составляющим 45о30' (определяют arc sin ), и измеряют спектр нарушенного полного внутреннего отражения при воздействии светового излучения с длиной волны 3360 см-1. Снимают кривую изменения коэффициента отражения бумаги от времени (см. фиг. 2). После математической обработки полученных данных по величине коэффициента отражения рассчитывают объемную долю воды, поглощенной бумагой за единицу времени (см. фиг. 2). Геометрическая обработка полученной зависимости позволяет определить эффективное сечение пор, которое составляет 35% от площади образца, а также общий объем пор в образце. Строят гистограмму распределения пор по размерам.

Количество пор рассчитывается по математическим моделям, учитывающими скорость прохождения влаги по порам образца в зависимости от времени, и получают гистограмму распределения пор.

При определении пористости лавсановой пленки вспомогательный материал фильтровальную бумагу и исследуемую лавсановую пленку толщиной 3 мкм высушивают до постоянного веса в сушильном шкафу при 120оС до постоянного веса. Фильтровальную бумагу приводят в контакт с элементом НПВО с одной стороны и лавсановой пленкой с другой стороны. Измеряют спектр НПВО бумаги в области поглощения сорбата. Помещают образец в камеру, подают в нее пары хлороформа и начинают измерять изменение спектра НПВО фильтровальной бумаги в зависимости от времени, по которой определяют параметры пористости пленки.

В следующем примере исследуется система, состоящая из вспомогательного материала микропористой пленки SiO2 и исследуемой поликарбонатной пленки толщиной 1 мкм, предварительно высушенной до постоянного веса в сушильном шкафу при 120оС. Микропористую пленку приводят в контакт с элементом НПВО с одной стороны и поликарбонатной пленкой с другой стороны. Измеряют спектр НПВО микропористой пленки SiO2 в области поглощения паров воды. Помещают образец в камеру, подают в нее пары воды и измеряют изменение спектра НПВО микропористой пленки по мере насыщения SiO2 парами воды.

Таким образом, изобретение позволяет исследовать сквозную пористость широкого диапазона листовых материалов: от тканых материалов и бумаги до разнообразных полимерных пленок. Толщина исследуемых материалов может составлять от нескольких миллиметров до 0,1 мкм. Способ дает возможность исследовать разнородные материалы с применением одного и того же вспомогательного материала и сорбата, что значительно снижает его трудоемкость. Повышением точности определяемых параметров и стало возможным определение параметров сквозных пор, соизмеримых с размером молекулы используемого в способе сорбата. Данный метод особенно эффективен, в частности при оценке качества диэлектрических сверхтонких пленок, лаковых покрытий и др.


Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ ПОРИСТОСТИ МАТЕРИАЛОВ, включающий высушивание образца материала и насыщение его сорбатом, воздействие на образец светом через оптический элемент под углом, превышающим угол полного внутреннего отражения, и измерение изменения интенсивности отраженного излучения во времени до полного насыщения образца, по которому определяют пористость материала, отличающийся тем, что между оптическим элементом и образцом помещают в контакте с ними слой вспомогательного материала толщиной, превышающей или равной глубине проникновения в него светового излучения, обладающего более высокой, чем материал образца, молекулярно-капиллярной впитываемостью, и измеряют интенсивность отраженного излучения в виде спектра нарушенного полного внутреннего отражения вспомогательного материала в области поглощения сорбата.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к области исследования свойств пористых материалов, в частности к устройствам для исследования проницаемости нефте- и водонасыщенных образцов керна горных пород методом центрифугирования, и может быть использовано в геологии, горной и нефтега- зодобывающей промышленности

Изобретение относится к устройствам для определения проницаемости пористых тел, в частности водопроницаемой почвы
Изобретение относится к области измерительной техники при исследовании физических свойств веществ, в частности к способам измерения размера пор мембран, и может быть использовано при сертификации и паспортизации полупроницаемых мембран для микрофильтрационной техники

Изобретение относится к области исследований строительных свойств скальных массивов - оснований гидротехнических сооружений

Изобретение относится к контрольно-измерительной и экспериментальной технике и может быть использовано для контроля и определения структурных характеристик, в частности пористости, диаметра пор, удельной поверхности пор, зависимости эквивалентного капиллярного диаметра пор по толщине проницаемого материала, в металлургической, целлюлозно-бумажной и других отраслях промышленности, а также в экспериментальных исследованиях, преимущественно для материалов, получаемых из тканых сеток, например пористых сетчатых металлов

Изобретение относится к инженерно-геологическим изысканиям, в частности к устройствам для определения коэффициента фильтрации донных отложений водоема в полевых условиях

Изобретение относится к инженерно-геологическим изысканиям, в частности к определению в лабораторных условиях гидродинамического давления на грунт фильтрационного потока воды

Изобретение относится к гидрофизике почв и мелиоративному почвоведению и предназначено для определения давления входа воздуха (барботирования) почв и других пористых материалов

Изобретение относится к области мембранных фильтров на основе ядерных трековых мембран, применяемых для очистки питьевой вводы и воды для медпрепаратов, для фильтрации плазмы крови и биологических жидкостей, для фильтрации воздуха особо чистых помещений (больничных операционных, промышленных помещений для производства прецизионных средств микроэлектроники, производства компакт-дисков)

Изобретение относится к способам контроля свойств материалов и изделий и может быть использовано в производстве бетонных и железобетонных изделий

Изобретение относится к способу и устройству для испытания целостности фильтрующих элементов в фильтрующем узле

Изобретение относится к технике моделирования фильтрации и вытеснения различных флюидов через капиллярно-пористые тела

Изобретение относится к области промысловой геофизики, а именно к сейсмоакустическим способам исследования скважин, в частности к способам оценки проницаемости горных пород

Изобретение относится к измерительной технике и может быть использовано при испытании мембран и мембранных патронов для контроля их качества

Изобретение относится к исследованиям свойств бетонов и других пористых материалов на воздухопроницаемость

Изобретение относится к анализу физико-механических свойств материалов, а именно пористой структуры и сорбционных свойств разнообразных объектов, таких как мембраны, катализаторы, сорбенты, фильтры, электроды, породы, почвы, ткани, кожи, строительные материалы и др., и может быть использовано в тех областях науки и техники, где они применяются
Наверх