Гамма-датчик с анизотропной чувствительностью

 

Использование: ядерная физика, в частности детекторы, позволяющие определить направленность ионизирующего излучения, а также гамма-астрономия. Сущность изобретения: гамма-датчик содержит осесимметричный детектор гамма-излучения, окруженный соосной с ним осесимметричной радиационной защитой. Внешняя поверхность радиационной защиты изотропного детектора со стороны гамма-излучателя образована вращением вокруг оси симметрии датчика кривой r() = -1/ ln[E()], где r()- толщина радиационной защиты со стороны гамма-излучателя, вдоль направления на гамма-излучатель; - угол между осью симметрии датчика и направлением на гамма-излучатель; - линейный коэффициент ослабления гамма-излучения для материала радиационной защиты со стороны гамма-излучателя, E()- диаграмма направленности датчика, определяемая, например, из зависимости E() = a+b, где a = -2/, b=1 Такая конструкция гамма-датчика позволяет обеспечить заданную точность пеленгования гамма-излучателя в произвольно выбранном диапазоне углов пеленгации и (или) повышенную точность в области малых углов. 4 ил.

Изобретение относится к ядерной физике, в частности к детекторам, позволяющим определить направленность ионизирующего излучения, а также к гамма-астрономии.

Известно устройство детектор в коллиматоре для выделения излучения, приходящего в детектор с определенного направления, представляющее собой сцинтилляционный детектор, окруженный радиационной защитой, имеющей цилиндрическое отверстие в передней части [1] Недостатком его является невозможность определения направления на источник излучения без механического сканирования.

Прототипом изобретения, не требующим сканирования для определения направления прихода гамма-квантов, является гамма-датчик с анизотропной чувствительностью [2] Конструкция гамма-датчика представляет собой осесимметричный детектор гамма-излучения, окруженный соосно с ним осесимметричной радиационной защитой, наружная и внутренняя поверхности которой со стороны пеленгуемого гамма-излучателя выполнены в виде плоскостей, перпендикулярных оси симметрии датчика, а сцинтиллятор выполнен в виде диска, который окружен боковой радиационной защитой.

Однако, такая конструкция не обеспечивает заданную точность пеленгования в произвольно выбранном диапазоне углов пеленгации, например, одинаковую точность во всем диапазоне углов пеленгации и более высокую точность в области малых углов, ввиду того, что зависимость чувствительности гамма-датчика в силу приведенных конструктивных особенностей пропорциональна косинусу угла между осью симметрии гамма-датчика и направлением на гамма-излучатель.

Изобретение предназначено для определения направления на точечный гамма-излучатель с заданной точностью в произвольно выбранном диапазоне углов пеленгации, например, одинаковую точность во всем диапазоне углов пеленгации и более высокую точность в области малых углов, что не обеспечивается ни аналогом ни прототипом.

Конкретный вариант постановки данной задачи проиллюстрирован на следующем примере. Несколько идентичных металлических шаров в потоке жидкости, подаваемой через патрубок 1 и вытекающий через патрубок 2, двигаются по трубке Пито 3 в жидкой среде (фиг. 1). Необходимо определить местоположение одного из них в отдельные последовательные моменты времени на траектории 4. Выбранный шар (шаровой индикатор) не может быть помечен каким-либо путем, кроме его активации, например, медленными нейтронами, так как во всех остальных случаях изменяются его физические характеристики (вес, структура поверхности, намагниченность и т.д.), влияющие на характер его поведения в жидкости или на взаимодействие его с остальными шарами. Учитывая то, что в этой задаче диаметр трубки Пито, расстояние между ее прямым и обратным коленом и собственные размеры заявляемого гамма-датчика 5 много меньше расстояния от датчика 5 до трубки Пито 3, положение шарового индикатора полностью определяется углом. При этом заявляемый гамма-датчик должен обеспечивать заданную точность пеленгования в произвольно выбранном диапазоне углов пеленгации и более высокую точность в области малых углов (- угол между осью симметрии 6, гамма-датчика 5 и направлением на шаровой индикатор гамма-излучатель).

В предлагаемом гамма-датчике, содержащем осесимметричный детектор гамма-излучения; осесимметричную соосную с детектором радиационную защиту, которой окружен детектор, причем внутренняя поверхность защиты со стороны пеленгуемого гамма-излучателя выполнена в виде плоскости, перпендикулярной оси симметрии датчика, применен изотропный детектор, а внешняя поверхность защиты детектора со стороны гамма-излучателя образована вращением вокруг оси симметрии датчика кривой где R() расстояние от оси симметрии датчика до внешней поверхности радиационной защиты со стороны гамма-излучателя; d() толщина радиационной защиты со стороны гамма-излучателя, вдоль направления на гамма-излучатель; - угол между осью симметрии датчика и направлением на гамма-излучатель; - линейный коэффициент ослабления гамма-излучения для материала радиационной защиты со стороны гамма-излучателя; () диаграмма направленности датчика, определяемая, например, из зависимости ()= а+ b, где a b=1 Специально выбранная форма внешней поверхности радиационной защиты изотропного детектора со стороны гамма-излучателя позволяет получить диаграмму направленности датчика (зависимости чувствительности датчика от угла между осью симметрии и направлением на гамма-излучатель), представленную на фиг. 2 (прямая 1), т.е.

()=1 . (1) При этом погрешность определения угла
, (2) или с учетом формулы (1)
.= , (3) т.е. не зависит от точность определения угла постоянна во всем диапазоне углов пеленгации (фиг. 3, прямая 1).

В то же время для устройства-прототипа (фиг. 2, кривая 2)
() cos, (4) или с учетом формулы (2):
. (5) Таким образом (фиг. 3, кривая 2)

Следовательно, изобретение обеспечивает более высокую точность определения направления на гамма-излучатель в области малых углов.

На фиг. 1 представлена схема, иллюстрирующая поставленную задачу; на фиг. 2 графики зависимости чувствительности гамма-датчика-прототипа (кривая 2) и предлагаемого гамма-датчика (прямая 1) от угла между осью симметрии гамма-датчика и направлением на гамма-излучатель; на фиг. 3 графики зависимости относительной погрешности угла пеленгации от величины этого угла для гамма-датчика-прототипа (кривая 2) и для предлагаемого гамма-датчика (прямая 1); на фиг. 4 предлагаемый гамма-датчик.

Гамма-датчик (фиг. 4) содержит изотропный детектор гамма-излучения 7 и окружающую его осесимметричную радиационную защиту 8 и 9, соосную с осью симметрии датчика 10, при этом радиационная защита 8 со стороны гамма-излучателя 11 имеет внешнюю поверхность 12 и внутреннюю поверхность 13. При этом кратчайшее расстояние от оси симметрии 10 до данной точки А внешней поверхности 12 является радиусом R, а перпендикуляр, опущенный из точки А на внутреннюю поверхность 13 является толщиной d радиационной защиты 8. Внутренняя поверхность 13 является плоскостью, перпендикулярной оси симметрии датчика 10, а внешняя поверхность 12 образована вращением вокруг оси симметрии датчика 10 кривой
где R() расстояние от оси симметрии датчика до внешней поверхности радиационной защиты со стороны гамма-излучателя;
d() толщина радиационной защиты со стороны гамма-излучателя вдоль направления на гамма-излучатель;
- угол между осью симметрии датчика и направлением на гамма-излучатель;
- линейный коэффициент ослабления гамма-излучения для материала радиационной защиты со стороны гамма-излучателя;
() диаграмма направленности датчика, определяемая из зависимости ()= а+ b, где a b=1
Гамма-датчик действует следующим образом.

При перемещении гамма-излучателя 11 из положения = 0 в положение 0 по графику зависимости чувствительности гамма-датчика от угла между осью его симметрии и направлением на гамма-излучатель (фиг. 2) определяют угол , задающий положение в данный момент времени гамма-излучателя 5 на траектории его движения. При этом точность определения угла не зависит от самого угла и имеет конечную величину для всех вплоть до = 0.


Формула изобретения

ГАММА-ДАТЧИК С АНИЗОТРОПНОЙ ЧУВСТВИТЕЛЬНОСТЬЮ, содержащий осесимметричный детектор гамма-излучения, окруженный соосной с ним осесимметричной радиационной защитой, одна поверхность которой является внутренней, отличающийся тем, что в качестве детектора гамма-излучения использован изотропный детектор, а внешняя поверхность защиты со стороны гамма-излучателя образована вращением вокруг оси симметрии гамма-датчика кривой, описываемой уравнением

где r() толщина радиационной защиты со стороны гамма-излучателя вдоль направления на гамма-излучатель;
угол между осью симметрии датчика и направлением на гамма-излучатель;
m линейный коэффициент ослабления гамма-излучения для материала защиты со стороны гамма-излучателя;
E() диаграмма направленности датчика.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к технике физического эксперимента, в частности к ускорительной технике, и может быть использовано на ускорителях различных типов для стабилизации положения пучка на мишени

Изобретение относится к преобразователям параметров электронного излучения малой энергии ( 10 МэВ) и может быть использовано в ускорительной технике, радиационной технологии, метрологии электронного излучения

Изобретение относится к области измерений местоположения воздействий излучений и может применяться в системах контроля, управления и информационных

Изобретение относится к контрольно-измерительной технике, а конкретнее к средствам измерения энергии электронов в пучке от ускорителя

Изобретение относится к ускорительной технике, а именно к регистрации пучков заряженных частиц на различных ускорителях

Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для медицинских рентгеновских установок, томографии, маммографии, а также для промышленных интроскопов с высоким пространственным разрешением

Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для использования в медицинских рентгеновских установках, томографах, маммографах, а также в промышленных интроскопах с высоким пространственным разрешением

Изобретение относится к рентгенотехнике, в частности к рентгеновским приемникам, и предназначено для использования в медицинских рентгеновских установках, томографах, маммографах, а также в промышленных интроскопах с высоким пространственным разрешением

Изобретение относится к компьютерной томографии, основанной на получении изображения объекта по малоугловому рассеянному излучению

Изобретение относится к технической физике может быть использовано для дистанционного контроля в реальном времени пространственного распределения радиоактивных объектов малой активности
Наверх