Способ фазирования многоапертурной системы

 

Использование: в оптическом приборостроении, в частности в астрономии для построения когерентных систем из телескопов. Сущность изобретения: в способе фазирования многоапертурной системы, заключающемся в регистрации суммарного изображения источника светового излучения и изменении разностей хода между световыми субпучками системы до достижения максимальных значений измеряемой энергии, просвечивают зарегистрированное суммарное изображение пучком когерентного излучения, фокусируют просвечивающее излучение и регистрируют его распределение интенсивности, выделяют в нем области, соответствующие различным парам субпучков, измеряют значения его энергии в выделенных областях и изменяют относительные разности хода субпучков до достижения максимальных значений измеряемой энергии. 1 ил.

Изобретение относится к оптическому приборостроению и может быть использовано в астрономии для построения когерентных систем из телескопов.

Наиболее близким по технической сущности к предлагаемому является способ фазирования многоапертурной системы, заключающийся в регистрации суммарного изображения источника светового излучения и изменении разностей хода между световыми субпучками системы до достижения максимального значения измеряемой энергии.

Основным недостатком этого способа является пониженная точность фазирования, обусловленная малым значением отношения сигнал/шум. В прототипе и аналогах для контроля процесса фазирования формируют единое для всей системы распределение интенсивности (автокорреляции разности изобретения) и судят о качестве фазирования путем анализа (измерения энергии, счета интерференционных полос) этого распределения. Однако данное распределение зависит сразу от всех N(N-1) разностей хода между N субпучками системы, в связи с чем энергия сигнальной составляющей при изменении только одной из разностей хода составляет не более [ N(N-1)]-1 от всей энергии формируемого распределения интенсивности, что приводит к пониженному значению отношения сигнал-шум. С этой точки зрения предпочтительнее формировать и анализировать не одно, а несколько (в оптимальном случае N(N-1)) распределений, каждое из которых будет зависеть только от малой группы (в оптимальном случае от одной) разностей хода.

Целью изобретения является повышение точности фазирования многоапертурной системы.

Цель достигается тем, что просвечивают зарегистрированное суммарное изображение пучком когерентного излучения, фокусируют просвечивающее излучение и регистрируют его распределение интенсивности, выделяют в зарегистрированном распределении области, соответствующие различным парам субпучков, измеряют значения энергии зарегистрированного распределения в выделенных областях и изменяют относительные разности хода субпучков до достижения максимальных значений измеряемой энергии.

На чертеже представлена возможная схема осуществления способа.

На чертеже позициями обозначены: принимаемое световое излучение 1, телескопическая система 2, устройство 3 изменения разностей хода (оптическая линия задержки), система плоских зеркал 4, линза 5, с помощью которой формируют по субпучкам системы суммарное изображение источника светового излучения 1, фотопластинка 6, на которой регистрируют суммарное изображение, лазер 7, коллиматор 8 лазерного излучения, фокусирующая линза 9, фотопластинка 10, на которой регистрируют распределение интенсивности сфокусированного когерентного излучения, диафрагмирующая амплитудная маска 11, с помощью которой выделяют области, соответствующие различным парам субпучков, измеритель 12 энергии, блок 13 анализа измеряемых значений энергии, блок 14 управления устройствами 3 измерения разности хода.

Способ осуществляют следующим образом.

Световое излучение 1 от наблюдаемого источника принимают N телескопическими системами 2, выделяя при этом N субпучков, направляют с помощью плоских зеркал 4 на линзу 5 и формируют с ее помощью суммарное изображение источника излучения, которое регистрируют на фотопластинке 6. Зарегистрированное изображение просвечивают параллельным пучком когерентного излучения, полученным при пропускании излучения лазера 7 через коллиматор 8, фокусируют просвечивающее излучение линзой 9, получая при этом в ее фокальной плоскости пространственный спектр суммарного изображения, регистрируют распределение интенсивности сфокуси- рованного излучения (полученного спектра) на фотопластинке 10, выделяют с помощью маски 11 области, соответствующие различным группам субпучков (при безызбыточном расположении различным парам), измеряют в них значения энергии с помощью измерителей 12, анализируют эти значения блоком 13 и изменяют с помощью блока 14 и устройства 3 относительные разности хода до достижения максимальных значений измеряемых энергий, достигая при этом состояния сфазированности системы.

Эффект от использования предлагаемого способа по сравнению с прототипом заключается в повышении точности фазирования за счет повышения отношения сигнал-шум. Для количественной оценки степени повышения отношения сигнал-шум рассмотрим практически важный случай безызбыточной многоапертурной системы. Поскольку в обоих способах формирование и регистрацию суммарного изображения источника светового излучения осуществляют подобным образом, то величину шума будем считать одинаковой. В то же время в прототипе величина сигнальной составляющей, как уже отмечалось, меньше в N(N-1) раз, чем в предлагаемом способе, при N 3 получаем, что степень повышения отношения сигнал-шум равна 3.

Сравнивая предлагаемый способ с прототипом, необходимо также отметить, что последний предназначен только для компенсации детерминированных разностей хода, в то время как первый может быть использован как в режиме непрерывной компенсации одновременно детерминированных случайных разностей хода, так и в режиме эпизодической компенсации только детерминированных изображений. В последнем случае перед измерением энергии необходимо усреднение зарегистрированного распределения интенсивности пространственного спектра изображения по атмосферным искажениям (для этого можно, например, регистрировать М коротко-экспозиционных суммарных изображений и накапливать распределение интенсивности спектра по М интервалам регистрации).

Формула изобретения

СПОСОБ ФАЗИРОВАНИЯ МНОГОАПЕРТУРНОЙ СИСТЕМЫ, заключающийся в регистрации суммарного изображения источника светового излучения и изменении разностей хода между световыми субпучками системы до достижения максимальных значений измеряемой энергии, отличающийся тем, что, с целью повышения точности фазирования, просвечивают зарегистрированное суммарное изображение пучком когерентного излучения, фокусируют просвечивающее излучение и регистрируют его распределение интенсивности, выделяют в зарегистрированном распределении области, соответствующие различным парам субпучков, измеряют значения энергии зарегистрированного распределения в выделенных областях и изменяют относительные разности хода субпучков до достижения максимальных значений измеряемой энергии.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к оптическому приборостроению и может быть использовано для смотровых глазков, устанавливаемых в непрозрачных стенах, окнах и дверях различной толщины

Изобретение относится к оптическому приборостроению и может найти применение как в лазерно-локационных системах, так и в многоканальных фотометрах и предназначено, в частности, для использования в качестве зеркальной телескопической насадки для лазерного приемопередающего устройства на нескольких (в том числе и на одной) длинах волн в оптическом диапазоне спектра

Изобретение относится к оптико-электронным устройствам, предназначенным для наблюдения ночью в условиях пониженной освещенности

Изобретение относится к оптико-электронным устройствам, предназначенным для наблюдения ночью в условиях пониженной освещенности

Изобретение относится к оптическому приборостроению и может найти применение как в лазерно-локационных системах, так и в многоканальных фотометрах и предназначено, в частности, для использования в качестве зеркальной телескопической насадки для лазерного приемопередающего устройства на нескольких (в том числе и на одной) длинах волн в оптическом диапазоне спектра

Изобретение относится к офтальмологической технике, как беспаралаксное, высокоточное, прямого видения визирное устройство, предназначенное для применения в областях: медицине, геодезии, астрономии, космонавтике, спорте, точной механике, военном деле, строительстве, авиации, судоходстве

Изобретение относится к офтальмологической технике, как беспаралаксное, высокоточное, прямого видения визирное устройство, предназначенное для применения в областях: медицине, геодезии, астрономии, космонавтике, спорте, точной механике, военном деле, строительстве, авиации, судоходстве

Изобретение относится к оптическим приборам, а именно к устройствам для наблюдения объектов, и может быть использовано при наблюдении объектов устройствами, имеющими два монокуляра, например как в микрохирургических микроскопах, так и в биноклях, стереофотоаппаратах, стереотрубах и тому подобных

Изобретение относится к средствам наблюдения в условиях ограниченной видимости и предназначено для использования в судовождении, горных и поисково-спасательных работах, для целей охраны, охоты и т.д

Изобретение относится к лазерным приборам типа дальномеров, целеуказателей, снабженных дневным оптическим визиром, и может быть использовано для их сопряжения с каналом ночного видения или телевизионным каналом

Бинокль // 2104577
Изобретение относится к оптическому приборостроению и может быть использовано при разработке зрительных труб и биноклей

Бинокль // 2104577
Изобретение относится к оптическому приборостроению и может быть использовано при разработке зрительных труб и биноклей

Изобретение относится к оптическому приборостроению, в частности к бинокулярным приборам, предназначенным для стереоскопического наблюдения объекта или его фрагментов с малых расстояний в медицине, промышленности, быту

Изобретение относится к оптико-механическому приборостроению и может найти применение в зрительных трубах, визирах, прицелах и других приборах, предназначенных для наблюдения удаленных и быстро перемещающихся объектов типа самолет, вертолет

Изобретение относится к медицинской технике, а именно к оптическим системам жестких эндоскопов, предназначенных для контроля за проведением диагностических, лечебных и хирургических манипуляций, а также визуального осмотра особо узких полостей и биологических каналов тела человека

Изобретение относится к оптическому приборостроению, а конкретнее к визирным оптическим системам, и предназначено для образования визирной линии
Наверх