Способ изготовления планарных p+- n -переходов на кристаллах inas n-типа проводимости

 

Использование: в способах, предназначенных для изготовления диодов, транзисторов, в том числе фотодиодов и фототранзисторов, а также приборов на кристаллах арсенида индия. Сущность изобретения: способ изготовления планарных p+- n -переходов на кристаллах inAs n-типа проводимости основан на методе ионной имплантации с последующим отжигом. В качестве исходных кристаллов используют эпитаксиальные пленки или пластины, вырезанные из стекла и шлифованные без применения алмазных порошков, имплантацию осуществляют ионами бериллия с энергией 30 100 кэВ и дозой 1013-31014см-2, а после отжига при 550 600°С проводят защиту поверхности формированием пленки анодного окисла в электролите на основе винной кислоты, этиленгликоля и фтористого аммония в гальваностатическом режиме при плотности тока 0,5-1 мAсм-2 с последующим нанесением пассивирующей диэлектрической пленки. 1 табл.

Изобретение относится к способам изготовления полупроводниковых приборов и может быть использовано при изготовлении диодов, транзисторов, в том числе фотодиодов и фототранзисторов, а также более сложных приборов на кристаллах InAs, обладающих высоким значением пробивного напряжения (Uпр.), дифференциального сопротивления (Rд) и квантовой эффективности ( ), а также высокой стабильностью параметров.

При всех известных способах обработки и защиты поверхности InAs поверхностный встроенный заряд положителен и его величина составляет 1012 см-2 и более. Такой заряд приводит к формированию на p-области инверсионного поверхностного канала при концентрациях легирующей примеси вплоть до (5-7).1017 см-3. Из этого следует, что использование в качестве исходного материала кристаллов p-типа проводимости с концентрацией примеси менее (5-7).1017 см-3 исключено из-за формирования инверсионных поверхностных каналов, а при больших концентрациях пробивное напряжение p-n-переходов составляет менее 50 мВ, что в большинстве практических применений недопустимо. Поэтому использование исходного материала p-типа проводимости исключено, допустимо использование только материала n-типа проводимости, при этом следует формировать p-n-переходы p+-n-типа с концентрацией в p+-области 1018см-3 и выше.

Известен способ изготовления p+-n-переходов на InAs диффузией атомов кадмия и меза-травлением для выделения планарных границ p+-n-переходов без применения защитной и пассивирующей диэлектрических пленок [1] Недостатком способа является невозможность изготовления планарных p+-n-переходов из-за отсутствия маскирующих пленок при диффузии кадмия, низкие пробивные напряжения из-за большого положительного встроенного поверхностного заряда, формирующего на поверхности n-области n+-слой с концентрацией больше 1017 см-3, низкая стабильность вольтамперных характеристик (низкая стабильность дифференциального сопротивления Rд) из-за отсутствия защитного стабилизирующего поверхность покрытия и низкий выход годных, обусловленный невозможностью стабильного получения слоев p+-типа с требуемой концентрацией и толщиной.

За прототип принят способ [2] заключающийся в имплантации ионов Сd+ в пластины InAs, обработанные традиционно шлифовкой с применением алмазных порошков с последующими химико-механической и затем химико-динамической полировками, и постимплантационного отжига при температуре 600-700оС без защиты поверхности в месте выхода p+-n-перехода диэлектрическими пленками.

Этот способ позволяет изготовить планарные p+-n-переходы, однако их электрические и фотоэлектрические параметры, такие как пробивное напряжение, дифференциальное сопротивление и квантовая эффективность, оказываются низким настолько, что применение таких p+-n-переходов в большинстве практически важных случаев не имеет смысла. Это обусловлено высокой степенью дефектности металлургической границы p+-n-перехода, произведенной таким "тяжелым" ионом, как Сd+. Дефектность столь высока, что последующий отжиг не дает возможности восстановить ее хоть в малой мере, близкой к тому уровню, который соответственно диффузионным p+-n-переходам или случаю имплантации "легких" ионов, таких как Ве+ и Мg+, с последующим отжигом.

Предлагаемое изобретение направлено на получение планарных p+-n-переходов на InAs с высоким и пробивным напряжением, дифференциальным сопротивлением и квантовой эффективностью, а также стабильностью дифференциального сопротивления. При осуществлении изобретения получаются слои p+-типа с требуемой концентрацией и толщиной и высокой степенью структурного совершенства в области металлургической границы p+-перехода, а поверхность защищается и стабилизируется так, что положительный заряд на границе раздел InAs-диэлектрик не превосходит 6.1011 см-2.

Способ изготовления планарных p+-n-переходов на InAs включает формирование локальных легированных областей ионной имплантацией и отжигом и отличается тем, что в качестве исходных кристаллов используют либо эпитаксиальные пленки, либо пластины, вырезанные из слитка n-типа проводимости и шлифованные без применения алмазных порошков, формирование легированных областей осуществляют имплантацией ионов бериллия с энергией 30-100 кэВ и дозой 1013-1014 см-2 и последующим отжигом при температуре 550-600оС, после чего осуществляют защиту поверхности анодным окислением в электролите на основе винной кислоты, этиленгликоля и фтористого аммония в гальваностатическом режиме при плотности тока 0,5-1 мА.см-2 с последующим нанесением пассивирующей диэлектрической пленки.

Изобретение основывается на следующих экспериментальных результатах.

1. Имплантация ионов Ве+ со средними (30-100 кэВ) энергиями и дозами (1013-13.1014 см-2) позволяет при низких температурах отжига (550-600оС) достичь столь высокого уровня отжига радиационных дефектов, что обеспечивается качество металлургической границы p+-n-перехода, не уступающее диффузионным p+-n-переходам. При этом гарантируется фактически 100%-ный выход годных и воспроизводимость параметров (RдUпр. ).

2. Имплантация ионов Ве+ позволяет формировать качественные p+-n-переходы только при использовании в качестве исходных кристаллов либо эпитаксиальных пленок, либок пластин InAs, вырезанных из слитков n-типа проводимости и прошедших шлифовку без применения алмазных порошков и паст с последующими химико-механической и химико-динамической полировками. При применении алмазных порошков и паст большинство p+-n-переходов оказывается закороченными. Это объясняется формированием при ионной имплантации устойчивых дефектных образований на основе глубоких дефектов, введенных при шлифовке на алмазном порошке и пронизывающих металлургическую границу.

3. Применение для защиты поверхности анодной окисной пленки (АОП), использование для этого электролита на основе винной кислоты и этиленгликоля с добавкой фторсодержащей компоненты (NH4F) и проведение анодирования в гальваностатическом режиме при плотности тока i 1 мА.см-2 обеспечивают положительный встроенный заряд на поверхности, не превышающий (5-6).1011 см-2, что гарантирует отсутствие поверхностного канала на p+-области и такое обогащение поверхности n-области, при котором пробивное напряжение составляет не менее 10-15 В, в отличие от случая обработки поверхности меза-травлением и отмывками, когда встроенный заряд составляет (8-10).1011 см-2, что приводит к уменьшению пробивных напряжений до 0,3-1 В.

Нанесение на поверхность АОП пленки типа SiO, Si3N4, Al2O3стабилизирует встроенный поверхностный заряд и как следствие ВАХ(Rд) p+-n-переходов.

Пределы параметров, приведенных в формуле изобретения, обусловлены тем, что превышение указанных значений энергии ионов и дозы имплантации, а также несоблюдение указанного диапазона температур отжига приводит к заметному понижению величин Uпр, Rд и p+-n-переходов. Превышение параметров имплантации создает неотжигающиеся дефекты, а их понижение приводит к заметному увеличению слоевого сопротивления; уход в область низких температур отжига не обеспечивает эффективный отжиг радиационных дефектов, а превышение температуры 600оС при отжиге существенно деформирует электрические параметры исходного кристалла. Состав электролита и использование гальваностатического режима при 0,5-1 мА.см-2 соответствует формированию встроенного заряда, не превышающего (5-6).1011 см-2. Низкий предел плотности тока при анодировании соответствует разумной производительности, а верхний началу заметного возрастания встроенного заряда. Нанесение пассивирующей диэлектрической пленки поверх анодноокисленной обеспечивает стабилизацию основных параметров Rд, Uпр, П р и м е р. Были изготовлены p+-n-переходы в виде 64-элементных линеек с размерами элементов 150х150 мкм2 в соответствии с предлагаемым решением с пассивирующей пленкой Si3N4 и металлизацией из Cr+Au. Изготовлены также p+-n-переходы со следующими отступлениями от условий, указанных в формуле: либо исходными кристаллами были пластины, вырезанные из слитка и обработанные с применением алмазных порошков, либо плотность тока при анодировании превышала 1 мА.см-2, либо на поверхность не наносилась пассивирующая пленка. Были также изготовлены p+-n-переходы по способу-прототипу: имплантация ионов Сd+ и отжиг при температуре 650оС без поверхностных защитных пленок; исходными были эпитаксиальные структуры n+-n-типа.

На всех p+-n-переходах при 77 К измерялись величины Rд, Uпр, и стабильность Rд, обозначаемая как где = 1 где Rд изменение первоначальной величины Rд при вылежке в течение 1 мес в нормальных условиях и прогревах при 60оС в течение 24 ч. Данные измерений всех образцов представлены в таблице.

Из таблицы следует, что осуществление предлагаемого изобретения обеспечивает изготовление планарных p+-n-переходов на InAs, повышает их дифференциальное сопротивление, пробивное напряжение, квантовую эффективность и стабильность Rд.

Формула изобретения

СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАНАРНЫХ p-n-ПЕРЕХОДОВ НА КРИСТАЛЛАХ Inas n-ТИПА ПРОВОДИМОСТИ методом ионной имплантации с последующим отжигом, отличающийся тем, что в качестве исходных кристаллов используют либо эпитаксиальные пленки, либо пластины, вырезанные из слитка и шлифованные без применения алмазных порошков, имплантацию осуществляют ионами беррилия с энергией 30 100 кэВ и дозой 1 1013 3 1014см-2, отжиг проводят при 550 - 600oС, после чего осуществляют защиту поверхности формированием пленки анодного окисла в электролите на основе винной кислоты, этиленгликоля и фтористого аммония в гальваностатическом режиме при плотности тока 0,5 1,0 мА см-2 с последующим нанесением пассивирующей диэлектрической пленки.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к технологии микроэлектроники, а именно к получению диэлектрических пленок, используемых в качестве межслойных, пассивирующих и селективно пропускающих излучение (фотошаблоны или фотолитографии) покрытий при изготовлении многоуровневых сверхбольших интегральных схем (СБИС) на основе соединений типа А2В5 или соединений, обладающих свойствами высокотемпературной сверхпроводимости (ВТСП), требующих низкотемпературной обработки

Изобретение относится к полупроводниковой технике, в частности к фотоэлектронике

Изобретение относится к технологии микроэлектронных устройств

Изобретение относится к области изготовления электронных приборов, в том числе запоминающих устройств, СБИС и т

Изобретение относится к микроэлектронике и может найти широкое применение в технологии полупроводниковых приборов при изготовлении структур диэлектрик полупроводник

Изобретение относится к области микроэлектроники, в частности к технологии изготовления интегральных схем, имеющих элемент памяти с затвором из поликристаллического кремния

Изобретение относится к полупроводниковой технике, в частности к технологии изготовления эпитаксиальных структур и полупроводниковых приборов

Изобретение относится к радиационной физике твердого тела, микроэлектронике, в частности к способам получения заглубленных эпитаксиальных (мезотаксиальных) тонкопленочных слоев в полупроводниках

Изобретение относится к области производства полупроводниковых приборов и может быть использовано в технологии изготовления дискретных приборов и интегральных схем для очистки (геттерирования) исходных подложек и структур на основе монокристаллического кремния от фоновых примесей и дефектов

Изобретение относится к методам формирования твердотельных наноструктур, в частности полупроводниковых и оптических, и может быть использовано при создании приборов нового поколения в микроэлектронике, а также в оптическом приборостроении

Изобретение относится к способам образования квазиодномерных твердых кремниевых наноструктур

Изобретение относится к области легирования твердых тел путем облучения ионами фазообразующих элементов и может быть использовано для ионной модификации структуры и физико-механических свойств металлов, полупроводников и сверхпроводников

Изобретение относится к области производства полупроводниковых приборов и может быть использовано в технологии для формирования в кристаллах областей с различным типом и величиной электропроводности с помощью имплантации ионов средних (10-5000 кэВ) энергий

Изобретение относится к области легирования твердых тел путем их облучения пучком ионов из фазообразующих атомов и может быть использовано для структурно-фазовой модификации твердых тел, например для улучшения их физико-механических, коррозионных и других практически важных свойств
Наверх