Способ получения полуизолирующего арсенида галлия

 

Использование: для получения монокристаллов полуизолирующего арсенида галлия (агп). Сущность изобретения: способ включает облучение монокристаллов быстрыми нейтронами, последующий нагрев и охлаждение. Облучению подвергают монокристаллы с различной степенью компенсации при плотности потока =(0,4-0)1016 см-2. Отжиг проводят при температуре 850 900 °С в течение 20 мин при скорости нагрева и охлаждения 4°С/мин и 2°С/мин соответственно. Получают АГП с улучшенной оптической неоднородностью 1 5%, уменьшенным оптическим поглощением =(6-7)10-3 см-1 на длине волны =10,6 мкм и повышенной термостабильностью свойств. 1 табл.

Изобретение относится к технологии полупроводниковых соединений типа АШВУ и может быть использовано при получении монокристаллов полуизолирующего арсенида галлия (АГП) с улучшенными параметрами.

Выпускаемые в промышленности монокристаллы АГП имеют ряд недостатков: неоднородность свойств по объему кристалла, достигающая 50% а в ряде случаев и выше; низкую стабильность параметров после термообработки; большую величину коэффициента оптического поглощения (=1,5 10-2 см-1) на длине волны = 10,6 мкм.

Широкое применение АГП в производстве электронных приборов, высокая степень интеграции приборов выдвигают более жесткие требования к качеству и геометрическим размерам (диаметр до 250 мм) монокристаллов. Улучшение параметров материала металлургическими способами в процессе выращивания монокристаллов в настоящее время практически не осуществимо.

Предлагаемый способ заключается в улучшении параметров АГП облучением нейтронами ядерного реактора и последующей термообработкой. Прототипом служит способ, заключающийся в том, что исходный нелегированный полуизолирующий арсенид галлия облучают быстрыми нейтронами (флюенсом Ф>7 1017 см-2) с последующей термообработкой в течение 30 мин при температуре до 800оС.

Недостатки способа в том, что улучшить характеристики полуизолирующего арсенида галлия таким образом не удается. Большие флюенсы нейтронов приводят к усилению прыжковой проводимости и ухудшению параметров материала. Температура отжига низкая и не дает ожидаемого эффекта.

Предлагаемый способ отличается тем, что в качестве исходного можно использовать полуизолирующий арсенид галлия с любой степенью компенсации, а облучение вести только быстрыми нейтронами (Е>0,1 МэВ) с плотностью потока не более 5 1012 см-2 с-1 до флюенса Ф=(0,4-5,0) 1016 см-2. Отсечь тепловые нейтроны можно, используя для облучения кадмиевые пеналы или другие известные способы. Необходимость ограничения плотности потока нейтронов вызвана сильным разогревом и возможным растрескиванием материала в процессе облучения.

Физический смысл происходящих в материале процессов заключается в следующем. В результате облучения быстрыми нейтронами в арсениде галлия возникают простые радиационные дефекты (пары Феркеля: атом в междоузлии и вакансия). С увеличением дозы облучения растет концентрация вводимых дефектов и повышается вероятность их взаимодействия (коагуляции) и образования более сложных радиационных дефектов (РД), так называемых областей разупорядочения (ОР). Образовавшиеся ОР служат геттерами для простых (точечных) дефектов, образовавшихся в кристалле в процессе облучения и на стадии выращивания. Последующая термообработка облученных образцов при температуре 850-900оС приводит к распаду ОР и перемещению простых дефектов на поверхность и на стоки (термообработка при температурах меньше 850 и выше 900оС и не дает ожидаемого эффекта). Тем самым происходит очистка матрицы от большого количества ростовых и других точечных дефектов. Оптическое поглощение в облученном и термообработанном материале на рабочей длине волны =10,6 мкм становится меньше, происходит так называемое просветление материала. Коэффициент поглощения уменьшается примерно в 2 раза и становится равным =(5-7) 10-3 см-1. Такое явление имеет большое практическое значение в связи с широким применением оптических окон из полуизолирующего арсенида галлия в производстве мощных технологических лазеров.

Циклическая обработка образцов (облучение и термообработка) приводит также к значительному повышению однородности и термостабильности свойств материала. Неоднородность электрофизических и оптических (глубокий уровень Е/2) характеристик в объеме материала не превышает 5% Термическая обработка образцов при 900оС в течение 8 часов не приводит к чувствительным изменениям параметров материала, в то время как в обычном (необлученном) материале термообработка при 900оС в течение 30-40 мин уже приводит к значительным изменениям параметров.

Применение радиационно-модифицированного материала в производстве полупроводниковых приборов (СБИС, СВЧ и оптоэлектронные приборы и др.) открывает новые перспективы в микроэлектронике.

П р и м е р 1. В качестве исходного материала используют монокристаллический слиток полуизолирующего арсенида галлия электронного типа проводимости ( 1108 Омсм), легированного хромом (NCr=31016 см-3), имеющего степень компенсации К=0,05. Оптическая неоднородность (по ЕL2) по диаметру слитка равна 1= 30% Неоднородность электрофизических характеристик, измеренных бесконтактным методом, равна 2 25% Оптическую однородность измеряют на двух оптически полированных пластинах толщиной 5 мм, вырезанных с разных участков слитка, методом оптического пропускания с разрешающей способностью в направлении сканирования 200 мкм и погрешностью измерений, не превышающей 2-3% Оптическое поглощение на длине волны =10,6 мкм измеряют на тех же пластинах. Коэффициент поглощения составляет =1,9 10-2 см-1.

Облучение нейтронами проводят в вертикальных каналах реактора ВВР-ц, используя кадмиевые пеналы для устранения тепловых нейтронов. Флюенс быстрых нейтронов (=5 1012см-2 с-1, Е>0,1 МэВ) составляет 5 1016 см-2.

После спада наведенной активности до допустимого уровня облученные образцы нагревают в запаянных кварцевых ампулах с равновесным давлением паров мышьяка со скоростью 4оС/мин до температуры 900оС. Отжиг проводят в течение 20 мин, а последующее охлаждение ведут со скоростью 2оС/мин до температуры 400оС, далее охлаждают вместе с печью до комнатной температуры.

В результате получают полуизолирующий арсенид галлия ( 2108Ом см) электронного типа проводимости с оптической неоднородностью 1=5% и неоднородностью электрофизических свойств 2=4% Коэффициент поглощения на длине волны = 10,6 мкм составляет =6,7 10-3 см-1. Термообработка образцов при 900оС в течение 8 ч не приводит к заметным изменениям электрофизических параметров материала.

П р и м е р 2. В качестве исходного материала используют монокристаллический слиток нелегированного полуизолирующего арсенида галлия электронного типа проводимости ( 8 107 Ом см), имеющего степень компенсации К= 0,35. Оптическая неоднородность по диаметру слитка равна 1=35% Неоднородность электрофизических характеристик, измеренных бесконтактным методом, 2= 50% Коэффициент поглощения на длине волны =10,6 мкм составляет =1,7 10-2 см-1.

Облучение быстрыми (=3 1012 см-2 x x с-1, Е>0,1 МэВ) нейтронами проводят в вертикальных каналах реактора ВВР-ц, используя кадмиевые пеналы. Флюенс нейтронов составляет 4 1015 см-2.

После спада наведенной активности образцы отжигают при температуре 850оС в течение 20 мин при тех же скоростях нагрева и охлаждения, что в примере 1.

В результате получают полуизолирующий арсенид галлия (=1,5 108Ом см) электронного типа проводимости с оптической неоднородностью 1=4,5% и неоднородностью электрофизических свойств 2=4% Коэффициент поглощения на длине волны =10,6 мкм составляет =6 10-3 см-1. Термообработка образцов при 900оС в течение 8 ч не приводит к заметным изменениям электрофизических параметров.

Примеры проведения процессов приведены в таблице. В качестве исходного материала может быть использован как нелегированный, так и легированный хромом полуизолирующий арсенид галлия в виде монокристаллических слитков и эпитаксиальных пленок.

Предлагаемый способ позволяет получить монокристаллы полуизолирующего арсенида галлия с улучшенной оптической однородностью (1 5%), уменьшенным оптическим поглощением =(5-7) 10-3 см-1 на длине волны =10,6 мкм и повышенной термостабильностью свойств.

Такой материал соответствует требованиям современной микро- и оптоэлектроники и пользуется большим спросом как на внутреннем, так и на внешнем рынке.

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ ПОЛУИЗОЛИРУЮЩЕГО АРСЕНИДА ГАЛЛИЯ путем облучения монокристаллов быстрыми нейтронами с последующим нагревом, отжигом и охлаждением, отличающийся тем, что облучению подвергают монокристаллы с различной степенью компенсации при плотности потока не более 5 1012 см-2 с-1 до флюенса ф= (0,4-5,0)1016 см-2, а отжиг проводят при 850-900oС в течение 20 мин при скорости нагрева и охлаждения 4 град/мин и 2 град/мин соответственно.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способам получения микрокристаллов, а именно к выращиванию кристаллических микровыступов из металлов с объемноцентрированной кубической решеткой и обеспечивает получение единственного стационарного микровыступа на вершине острия кристалла

Изобретение относится к способам понижения оптической плотности изделий оптики и может быть использовано для изготовления оптических элементов из кристаллов дигидрофосфата калия и его дейтерированных аналогов, в частности для изготовления удвоителей и утроителей частоты лазерного излучения

Изобретение относится к получению щелочно-галоидных монокристаллов высокой степени чистоты и может быть использовано для получения диспергирующих зле ментов ИК-спектроскопии, сред для записи информации, образцов для фундаменталь ных исследований, а также для очистки монокристаллов от кислородсодержащих примесей

Изобретение относится к получению монокристаллов бромидов и может быть использовано для легирования кристаллов и их использования в фундаментальных исследованиях

Изобретение относится к металлургии, преимущественно к технологии получения монокристаллических постоянных магнитов на основе Fe-Co-Cr-Mo

Изобретение относится к способам получения монокристаллов полупроводников и может быть использовано в цветной металлургии и электронной промышленности

Изобретение относится к полупроводниковой технологии и может найти применение при создании приборов оптоэлектроники и нелинейной оптики, в частности для полупроводниковых лазеров и преобразователей частоты

Изобретение относится к способу получения малодислокационных монокристаллов арсенида галлия и позволяет увеличить однородность распределения дислокаций в объеме монокристалла

Изобретение относится к электронной технике, конкретно к технологии материалов, предназначенных для создании приборов и устройств обработки и передачи информации

Изобретение относится к способу и устройству для разделения монокристаллов, а также устройству для юстировки и способу тестирования для определения ориентации монокристалла, предназначенным для осуществления такого способа
Изобретение относится к получению монокристаллических материалов и пленок и может использоваться в технологии полупроводниковых материалов для изготовления солнечных элементов, интегральных схем, твердотельных СВЧ-приборов
Наверх