Гравитационный трехкомпонентный градиентометр

 

Использование: в измерительной технике, в частности при измерении вертикального градиента силы тяжести W27 и двух составляющих градиента кривизны уровенной поверхности потенциала силы тяжести. Сущность изобретения: градиентометр снабжен третьим акселерометром в корпусе, вход датчика силы электрической пружины которого соединен с входами дополнительно предусмотренных датчиков силы двух других акселерометров, а входы датчиков силы электрических пружин этих двух акселерометров соединены с входом счетно-решающего устройства. 1 ил.

Изобретение относится к измерительной технике и предназначено для измерения вертикального градиента ускорения силы тяжести Wzz и двух составляющих градиента кривизны уровенной поверхности потенциала силы тяжести Wxx, Wyy.

Известен гравитационный трехкомпонентный градиентометр Чена-Пайка, содержащий два акселерометра на разных высотах, оси чувствительности которых расположены на одной оси, направленной под углом к направлению вертикали, поворотное устройство вокруг вертикальной оси на три позиции и регистрирующее устройство. Этот градиентометр принимаем за прототип.

Этот градиентометр может быть использован только в специальных лабораторных условиях, так как содержит два акселерометра, установленные на расстоянии 0,16 м. Для определения компонент градиента ускорения силы тяжести используется разность сигналов двух акселерометров, которая за счет неодинаковости статических характеристик акселерометров содержит и ускорение, и градиент силы тяжести, и отделить ускорение от градиента в условиях эксплуатации гравиметрических приборов не удается.

Для измерения градиента, например, с точностью 1 Э допускается абсолютная погрешность измерения акселерометров, равная 0,1610-9 м/с2 1,610-11 g. Разность крутизны статических характеpистик акселерометров (т.е. разность чувствительностей акселерометров) должна также обеспечить абсолютную погрешность в этих же пределах, что не достижимо в настоящее время в условиях эксплуатации гравиметрических измерителей.

В градиентометре Чена-Пайка это достигается установкой узла градиентометра в сосуд Дюара с гелием со специальной подвеской и установкой всего этого агрегата большего веса в подземную лабораторию. Использовать такую установку в условиях эксплуатации невозможно.

Техническим результатом изобретения является измерение градиентов силы тяжести в условиях эксплуатации гравиметрических измерителей.

Для достижения указанного технического результата градиентометр снабжен третьим акселерометром, вход датчика силы электрической пружины которого соединен с входом дополнительно предусмотренных датчиков силы двух других акселерометров, а входы датчиков силы электрических пружин этих двух акселерометров соединены с входом счетно-решающего блока.

В результате в предлагаемом градиентометре получают два сигнала, т.е. две разности, с двух датчиков силы электрических пружин двух акселерометров, зависящих от проекции ускорения силы тяжести g и градиентов на ось чувствительности прибора, и, таким образом, из двух соотношений, связывающих ускорение силы тяжести и градиент, можно найти (отдельно) и градиент, и ускорение силы тяжести, т.е. отделяется градиент ускорения силы тяжести без "баснословных" требований к акселерометрам.

Таким образом, предлагаемый градиентометр в сравнении с прототипом обеспечивает измерение в условиях эксплуатации гравиметрических измерителей.

Не известны технические решения, признаки которых совпадают с отличительными признаками заявляемого технического решения, поэтому оно соответствует критерию "новизна".

Указанные признаки в предложенном градиентометре обеспечивают достижение нового свойства, а именно возможность измерения в условиях эксплуатации гравиметрических измерителей, что позволяет сделать вывод о соответствии заявленного решения критерию "существенные отличия".

На чертеже представлена принципиальная схема предлагаемого гравитационного трехкомпонентного градиентометра.

Градиентометр содержит три акселерометра, которые состоят из корпусов 1, 2, 3, чувствительных систем в виде масс, например, из постоянных магнитов 4, 5, 6, магнитопроводов 7, 8, 9, полюсных наконечников 10, 11, 12, опор 13, 14, 15, 16, 17, 18, подвешенных в корпусах 1, 2, 3, например, с помощью лент 19, 20; 21, 22; 23, 24 и снабженных электрическими пружинами в виде датчиков 25, 26, 27 перемещений, усилительных блоков 28, 29, 30 и датчиков сил в виде постоянных магнитов 4, 5, 6, магнитопроводов 7, 8, 9, полюсных наконечников 10, 11, 12 и обмоток 31, 32, 33, установленных в каркасах 34, 35, 36, жестко связанных с корпусами 1, 2, 3. Вход датчика силы (обмотка 32) одного акселерометра (который в корпусе 2) соединен с входом дополнительных датчиков сил двух других акселерометров (которые в корпусах 1, 3), т.е. с дополнительными обмотками 37, 38. Входы датчиков силы, т.е. обмотки 31, 33, электрических пружин двух акселерометров (в корпусах 1, 3) соединены с входом регистрирующего устройствам в виде счетно-решающего блока 39. Корпуса 1, 2, 3 акселерометров жестко установлены на основании 40, скрепленном со стойкой 41, жестко связанной с поворотной плитой 42. Поворотная плита с помощью цапфы 43 и втулки 44 установлена на платформе 45, в которой предусмотрены три равнорасположенные по окружности втулки 46 (на чертеже две втулки из трех не показаны). В поворотной плите 42 предусмотрены втулка 47 и фиксатор 48.

Поворотная плита 42 поворотом вокруг вертикальной оси цапфы 43 фиксируется в трех разных угловых положениях фиксатором 48. Корпуса 1, 2, 3 акселерометров могут герметизироваться и могут вакуумироваться.

В рабочем положении градиентометра ось поворота плиты 42 устанавливается в вертикальное положение, а ось чувствительности акселерометров занимает положение под углом к направлению вертикали. В градиентометре может быть предусмотрено термостатирование.

В рассматриваемом примере принципиальной схемы градиентометра в качестве масс акселерометров используются постоянные магниты с магнитопроводами и полюсными наконечниками, а можно наоборот магнитопроводы с магнитами и полюсными наконечниками закрепить на корпусах, а в качестве масс подвесить каркасы 34, 35, 36 с обмотками 31, 32, 33, 37, 38. Массы акселерометров могут быть подвешены и как в прототипе, где подвеска состоит из механических пружин.

Для определения Wzz, Wxx, Wyy измерение производится в трех азимутах. Азимут устанавливается начальной выставкой платформы 45 и поворотом плиты 42.

Предлагаемый измеритель работает следующим образом.

Определение измеряемых величин производится алгоритмическим методом в несколько тактов измерения. Первый такт. Ось х направлена на север, ось у на восток, ось z перпендикулярна ху, ось чувствительности акселерометров направлена под углом к оси z в плоскости меридиана. Полагают, что первые и вторые производные потенциала силы тяжести постоянны в объеме, занимаемом измерителем. В результате имеют m1gl11=Fgc1; (1) m2(gl11-W)=n1Fgc1+Fgc2; (2) m3(gl11+W)= n2Fgc1+Fgc3, (3) где m1, m2, m3 чувствительные массы акселерометров (в корпусах 1, 2, 3), g= где W потенциал силы тяжести; l1 направление оси чувствительности акселерометров в первом такте измерения; Fgc1 сила, прикладываемая к массе акселерометра в корпусе 2 датчиком силы электрической пружины этого акселерометра; W= L1 расстояние между центрами чувствительных масс акселерометров в корпусах 2 и 1; L2 расстояние между центрами чувствительных масс акселерометров в корпусах 2 и 3; n1 коэффициент пропорциональности (передачи) между силой дополнительного датчика силы (обмотка 37) и силой, развиваемой датчиком силы электрической пружины акселерометра в корпусе 2 (обмотка 32); n2 коэффициент пропорциональности (передачи) между силой дополнительного датчика силы (обмотка 38) и силой, развиваемой датчиком силы электрической пружины акселерометра в корпусе 2 (обмотка 32); Fgc2, Fgc3 силы датчиков сил электрических пружин акселерометров в корпусах 1, 3 соответственно.

Из выражений (1), (2), (3) получают
Fgc2 A11gl1-A12W;
Fgc3 A21gl11+A22W, где A11 m2 n1m1;
A21 m3 n2m1;
A12 m2L1;
A22 m3L2.

Получают два соотношения, связывающие проекции ускорения силы тяжести и проекцию градиента силы тяжести на направление l1, откуда в счетно-решающем блоке и выделяют W, т. е. в отличие от прототипа определяют W от gl11, и не требуется ужесточать требования к конструктивным элементам прибора для устранения влияния gl11 (что требуется в прототипе).

Таким образом, в первом такте измерения определяют W.

Выполняя операции, аналогичные первому такту, во втором и третьем тактах, поворачивая систему в азимуты = 120о и =240о, находят W и W, где W и W градиенты ускорения силы тяжести на направление l2 и l3 при втором и третьем тактах измерения.

Далее геометрически находят Wzz=(W+W+W)cos Wxx= [W-(W+W) sin30o]sin
Wyy=(W-W)cos30osin
=arccos 1/
Вычисление производится в счетно-решающем блоке.

Поскольку в предлагаемой схеме градиентометра происходит разделение сигналов ускорения и градиентов силы тяжести, то не требуется уменьшения влияния силы тяжести на выходной сигнал до величин, соответствующих допустимым абсолютным погрешностям измерения градиента, и в результате конструктивные требования к предлагаемому прибору аналогичны требованиям к гравиметрическим приборам, применяемых в эксплуатации.

Таким образом, в сравнении с прототипом, которые может измерять компоненты градиента только в специальных лабораторных условиях, предлагаемый градиентометр может проводить измерения в условиях эксплуатации существующих гравиметрических измерителей.

Предлагаемый градиентометр может работать на подвижном основании при соответствующем согласовании его динамических характеристик и параметров движения.


Формула изобретения

ГРАВИТАЦИОННЫЙ ТРЕХКОМПОНЕНТНЫЙ ГРАДИЕНТОМЕТР, содержащий регистрирующее устройство и два акселерометра, заключенные в корпус, при этом каждый акселерометр включает чувствительную систему с упруго закрепленной инертной массой, а оси чувствительности акселерометров направлены вдоль одной оси и образуют угол с направлением вертикали, причем корпус установлен с возможностью поворота относительно вертикали, отличающийся тем, что градиентометр дополнительно содержит третий акселерометр, при этом каждый акселерометр размещен в отдельном корпусе, каждый из которых жестко закреплен на основании с возможностью перемещения по направлению осей чувствительности акселерометров, инертная масса чувствительной системы каждого акселерометра выполнена в виде постоянного магнита, магнитопровода и полюсного наконечника, при этом инертные массы чувствительной системы каждого акселерометра снабжены датчиком перемещения, усилителем и датчиком силы, а также инертные массы чувствительной системы первого и третьего акселерометров снабжены дополнительными датчиками силы, при этом датчик силы инертной массы второго акселерометра соединен с дополнительными датчиками силы инертных масс первого и третьего акселерометров, датчики силы которых соединены с входом регистрирующего устройства, выполненного в виде счетно-решающего блока.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике, предназначено для измерения вертикального градиента ускорения силы тяжести Wzz и ускорения силы тяжести g

Изобретение относится к области гравиметрии и может быть использовано в баллистических лазерных гравиметрах для измерения абсолютных значений ускорения свободного падения (g)

Изобретение относится к измерительной технике и предназначено для измерения вертикального градиента ускорения силы тяжести WZZ

Изобретение относится к области гравиметрии, а именно к средствам абсолютных измерений ускорения свободного падения (ускорения силы тяжести)

Изобретение относится к гравиметрии и может быть использовано для измерений абсолютных значений ускорения свободного падения

Изобретение относится к геофизическому приборостроению, а именно к области гравиметрии, и предназначено для выставления вертикали лазерного луча в баллистическом гравиметре при проведении высокоточных абсолютных измерений силы тяжести или ее приращений. Сущность способа заключается в отслеживании смещения лазерного луча отраженного от свободно падающего тела в процессе его движения с помощью видеокамеры, вычисления по данным видеозаписи угла отклонения лазерного луча от вертикали и коррекции направления луча в требуемую сторону. Технический результат заключается в обеспечении возможностей повышения точности выставления вертикали лазерного луча в баллистическом гравиметре, уменьшения погрешности измерения абсолютного значения ускорения силы тяжести, уменьшения чувствительности к вибросейсмическим помехам. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области гравиметрии и касается способа выставки в вертикаль лазерного луча баллистического гравиметра. Способ заключается в том, что проводят серию бросков пробного тела при различных наклонах платформы гравиметра, в каждом броске определяют ускорение свободного падения, находят минимальное значение ускорения в серии бросков и соответствующий ему наклон платформы, при этом наклоне фиксируют платформу. Для реализации способа предлагается лазерный баллистический гравиметр, содержащий платформу, акселерометры и двигатели. В гравиметр введена система управления выставкой в вертикаль лазерного луча, содержащая блок соответствия, имеющий структуру матрицы, построчные ячейки которой представляют собой величины измеренных ускорений свободного падения, углы наклона платформы, сигналы управления и выключатели, а столбцы представляют собой ячейки сопоставления. Система управления также содержит общую шину, блок поиска, блок стратегий и сумматор. Технический результат заключается в повышении точности абсолютного измерения ускорения свободного падения, упрощении обслуживания гравиметра и сокращении времени полевых измерений. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области гравиметрии и может быть использовано для измерения в морских условиях абсолютных значений ускорения свободного падения. Сущность: на корабле устанавливают абсолютный лазерный и относительный гравиметры. Измеряют множество интервалов пути и времени лазерным интерферометром абсолютного гравиметра. Выделяют переменную составляющую сигнала относительного гравиметра. Вырабатывают команду на бросок пробного тела. Причем бросок пробного тела осуществляют при минимальной скорости вертикального перемещения основания, которую вычисляют по интегралу от составляющей сигнала относительного гравиметра, вызванной качкой корабля. Рабочий участок траектории полета пробного тела разбивают на кванты интерференционного сигнала. По разности интервалов времени прохождения соседних квантов вычисляют мгновенные значения суммы ускорений свободного падения и движения основания. Указанные значения осредняют и получают измеренную в броске сумму ускорений. На интервале времени полета пробного тела осредняют переменную составляющую сигнала относительного гравиметра. Среднее значение переменной составляющей вычитают из измеренной в броске суммы ускорений и сохраняют разность как измеренное в броске ускорение свободного падения. Проводят несколько бросков. Осредняют ускорения свободного падения по множеству бросков. По полученному истинному значению ускорения свободного падения корректируют показания относительного гравиметра. Для осуществления способа на основании (4) устанавливают абсолютный гравиметр (1), содержащий катапульту (2) и счетчик интерференционных импульсов (3). Рядом устанавливают относительный гравиметр (5). Оба гравиметра (1, 5) соединены с вычислителем (6). В вычислитель (6) введены блок (7) мгновенных суммарных ускорений, блок (8) среднего суммарного ускорения, фильтр (9), интегратор (10) выработки скорости основания, блок (11) среднего ускорения основания, две схемы сравнения (12, 13), накопитель (14), блок (15) истинного значения ускорения свободного падения и командный блок (16). Технический результат: повышение точности измерения ускорения свободного падения в условиях вертикальных перемещений основания, соизмеримых с длиной траектории полета пробного тела. 2 н.п. ф-лы, 1 ил.
Наверх