Способ очистки сточных вод от сероводорода

 

Использование: очистка бытовых, промышленных и послепроцедурных сточных вод от сероводорода. Сущность изобретения: для очистки воды используют в качестве сорбента гидролизный (нерастворимый) лингин, улучшая качество очистки сточных вод от сероводорода, при минимальных экономических затратах. 3 табл.

Изобретение относится к технологии очистки воды, а именно к способам очистки бытовых, промышленных а также послепроцедурных сточных вод, содержащих сероводород.

Наиболее близким к предложенному является способ очистки воды, основанный на применении активированного угля (АУ).

Адсорбционная активность АУ по отношению к сероводороду изучалась в статических условиях. Полученные результаты показали, что при малых концентрациях растворов сероводород адсорбируется торфяными АУ практически полностью.

Существенным недостатком этого способа является высокая стоимость АУ, а также необходимость его регенерации и утилизации регенерирующих растворов. Данный способ потребует большого количества топлива, так как активация и регенерация, если она осуществляется термическим методом, производится при высоких температурах.

Целью изобретения является улучшение качества очистки сточных вод за счет уменьшения содержания сероводорода при минимальных экономических затратах.

Это достигается введением в обрабатываемую воду сорбента, в качестве которого используют водонерастворимый гидролизный лигнин (ГЛ).

ГЛ это сложная полидисперсная система с размером частиц от нескольких сантиметров до микрометра и менее, коричневого цвета, нерастворима практически до конца ни в одном из известных растворителей.

Содержание основных функциональных групп лигнина следующее, ОСН3 8,5-9,5 ОНфен 5,0 СООН 1,4-2,8 Физические свойства ГЛ древесины представлены в табл.1.

Четыре образца предварительно подготовленного сорбента по 110, 660, 1750 и 3920 мг помещали в колбы с притертыми пробками со 150 мл сероводородной воды и подвергали встряхиванию с малой интенсивностью 44 ч. Сероводородную воду готовили растворением сульфида натрия до определенной концентрации.

Отработанный сорбент отделяли фильтрованием через бумажный фильтр, с последующим его анализом. Концентрацию суммарного сероводорода в воде определяли йодометрическим титрованием.

По результатам опытов рассчитывали сорбционную емкость по формуле Г где Г величина адсорбции, ммоль/г; Vв объем пробы воды, л; С разность концентраций сероводорода в воде до и после сорбции, ммоль/л; m масса сорбента, г.

Результаты эксперимента представлены в сравнении с адсорбционными свойствами активированного угля. В случае использования для сорбции сероводорода ГЛ и АУ наблюдается общая тенденция снижения содержания сероводорода в воде с увеличением массы сорбента (см. табл.2).

По приведенной формуле были рассчитаны величины адсорбции сероводорода лигнином и углем (см. табл.3).

Для адсорбции растворенных газов из жидкости большое значение имеет площадь поверхности сорбента. Гидролизный лигнин в силу природного строения древесины, отходом переработки которой он является, имеет сильно развитую поверхностную структуру, что в значительной мере обеспечивает его сорбционную способность.

Строение молекул лигнина и его поверхностная структура позволяют улучшить качество сточных вод за счет уменьшения содержания сероводорода при минимальных экономических затратах.

Применение заявленного способа позволит получить сравнительно высокий эффект удаления H2S из воды (до 80%). Следует отметить, что стоимость АУ достаточно высока, в то время как гидролизный лигнин, представляя собой многотоннажный отход целлюлозо-бумажного производства, является практически бесплатным сорбентом, не нуждающимся в регенерации.

Существует несколько путей утилизации отработанного лигнина. Для данного способа наиболее приемлемым является использование его для производства удобрений, гербицидов, а также сжигание в виде брикетированного топлива.

Формула изобретения

СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СЕРОВОДОРОДА, включающий введение в обрабатываемую воду сорбента, отличающийся тем, что в качестве сорбента используют водонерастворимый гидролизный лигнин.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способам очистки растворов от дисперсных частиц и металлсодержащих ионов и может быть использовано на предприятиях химической промышленности, цветной и черной металлургии

Изобретение относится к опреснению морской воды, гелиотехнике, ветроэнергетике и вентиляции

Изобретение относится к области очистки производственных сточных вод от механических примесей и нефтепродуктов и может быть использовано для глубокой очистки промышленных стоков красильных и отделочных производств, текстильных и кожевенных предприятий, а также прочих вод, содержащих нефтепродукты, красители, синтетические ПАВ и другие специфические загрязнения

Изобретение относится к области очистки производственных сточных вод от механических примесей и нефтепродуктов и может быть использовано для глубокой очистки промышленных стоков красильных и отделочных производств, текстильных и кожевенных предприятий, а также прочих вод, содержащих нефтепродукты, красители, синтетические ПАВ и другие специфические загрязнения

Изобретение относится к области очистки производственных сточных вод от механических примесей и нефтепродуктов и может быть использовано для глубокой очистки промышленных стоков красильных и отделочных производств, текстильных и кожевенных предприятий, а также прочих вод, содержащих нефтепродукты, красители, синтетические ПАВ и другие специфические загрязнения

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх