Способ извлечения алюминия, кальция и редкоземельных металлов из красных шламов

 

Изобретение относится к способам извлечения легких, преимущественно алюминия, щелочноземельных, преимущественно кальция, и редкоземельных металлов из красных шламов отходов глиноземных производств. Цель изобретения повышение избирательности извлечения целевых продуктов и упрощение процесса. Данный способ включает выщелачивание кислотой, фильтрацию раствора и разделение извлекаемых целевых продуктов. Новым в способе является то, что выщелачивание проводят с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3 при массовом соотношении сухой твердой и жидкой фаз 1 (4 18) и концентрации кислот 3 25% при температуре 30 80°С в течение 0,5 3 ч. 5 табл.

Изобретение относится к цветной металлургии, в частности к способам извлечения легких, преимущественно алюминия, щелочноземельных, преимущественно кальция, и редкоземельных металлов из красных шламов отходов глиноземных производств.

Цель изобретения повышение избирательности извлечения целевых продуктов и упрощение процесса.

Поставленная цель достигается тем, что в способе извлечения алюминия, кальция и редкоземельных металлов из красных шламов глиноземных производств, включающем выщелачивание кислотой, фильтрацию раствора и разделение извлекаемых целевых продуктов, выщелачивание проводят с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3 при массовом соотношении сухой твердой и жидкой фаз 1:(4-18) и концентрации кислот 3-25% при температуре 30-80оС в течение 0,5-3 ч.

Изобретение иллюстрируется примерами.

Проверку способа проводили на опытной установке с использованием спекательного красного шлама Бокситогорского глиноземного завода как наиболее сложного в переработке.

Состав красного шлама, использованного в примерах, приведен в табл.1.

Результаты экспериментов по извлечению алюминия, кальция и редкоземельных металлов известным и предлагаемым способами при использовании различных выщелачивающих реагентов водорастворимых карбоновых кислот жирного ряда с числом атомов углерода менее 3, а именно водного раствора муравьиной кислоты НСООН и водного раствора уксусной кислоты СН3СООН, с различной концентрацией кислот, при различном соотношении сухой твердой и жидкой фаз, температуре и продолжительности извлечения приведены в примерах и табл. 2-5.

П р и м е р 1 (по известному способу). Пробу красного шлама, полученного при переработке бокситов по методу Байера, содержащего 12% Al2O3; 14% CaO; 36% Fe2O3; 9% SiO2; 4% TiO2 и 0,0007% Sc, подвергали восстановительной плавке при 1400 оС с известняком и коксом в течение 80 мин. При плавке образовывался саморассыпающийся алюмокальциевый шлак примерного состава: 20% Al2O3; 51% CaO; 6% TiO2; 15% SiO2, содержащий примерно 0,001% Sc и чугун, в котором содержалось менее 0,00005% Sc.

После выщелачивания шлака 30%-ным раствором серной кислоты и фильтрации раствора получили раствор, содержащий сульфаты алюминия и редкоземельных металлов, в частности скандия, а также твердый остаток, включающий в себя сульфат кальция. Редкоземельные металлы из сульфатного раствора, полученного в результате фильтрации, извлекали в органическую фазу путем экстракции 5%-ным раствором Ди2ЭГФК (ди-2-этилгексилфосфорная кислота) в керосине. Затем органическую фазу обрабатывали 10%-ным раствором соды и получали осадок гидроокисей редкоземельных металлов и раствор карбоната скандия. При экстракции алюминий в виде сульфата оставался в водном растворе. Извлечение алюминия, кальция и редкоземельных металлов из полученных продуктов осуществляли одним из известных способов.

П р и м е р 2 (по предлагаемому способу). Пробу красного шлама (состав табл. 1) влажностью 44% массой 100 г выщелачивали 500 мл 10%-ного раствора муравьиной кислоты (НСООН) при перемешивании в течение 2 ч при 70оС. Раствор фильтровали на фильтре Шотта и обрабатывали достаточным количеством серной кислоты до достижения равновесного значения pH 1,5 (для водной фазы). При этом кальций в виде нерастворимого сульфата (гипса) выпадал в осадок. Осадок отделяли фильтрацией на фильтре Шотта. Из отфильтрованного раствора отгоняли муравьиную кислоту в виде азеотропа (смеси) с водой до объема остатка в кубе (кубового остатка) 10 мл. Кубовый остаток обрабатывали 20 мл 20%-ного раствора карбоната натрия. При этом алюминий в виде алюмината и скандий в виде карбоната оставались в растворе, а остальные редкоземельные металлы в виде гидроксидов выпадали в осадок, который отделяли фильтрацией на фильтре Шотта. Раствор, содержащий алюминий и скандий, подкисляли до pH 8, пропуская через него ток газообразного углекислого газа. При этом алюминий в виде гидроокиси выпадал в осадок, а скандий оставался в растворе. Осадок отделяли фильтрацией на фильтре Шотта. Степень извлечения целевого продукта определяли как отношение абсолютного количества выделенного элемента к его абсолютному количеству, содержащемуся в пробе. Результаты представлены в табл.2.

П р и м е р 3 (по предлагаемому способу). Пробу красного шлама (состав табл.1) влажностью 44% массой 100 г выщелачивали 500 мл 10%-ного водного раствора уксусной кислоты (СН3СООН) при перемешивании в течение 2 ч при 70 оС и массовом соотношении сухой твердой и жидкой фаз 1:10. Опыт проводили по схеме примера 2. Результаты представлены в табл.2.

П р и м е р ы 4, 5, 6 и 7 (по предлагаемому способу). Проведена серия опытов по исследованию влияния массового соотношения сухой твердой и жидкой фаз на извлечение целевых продуктов. Пробу красного шлама (состав табл.1) влажностью 44% массой 100 г выщелачивали 500 мл 10%-ного водного раствора муравьиной кислоты при перемешивании в течение 2 ч при 70оС. Опыт проводили по схеме примера 2. Результаты представлены в табл.3.

П р и м е р ы 8, 9, 10 и 11 (по предлагаемому способу). Проведена серия опытов по исследованию влияния концентрации кислоты на извлечение целевых продуктов. Пробу красного шлама (состав табл.1) влажностью 44% массой 100 г выщелачивали 500 мл 10%-ного водного раствора муравьиной кислотой при перемешивании в течение 2 ч при 70оС и массовом соотношении сухой твердой и жидкой фаз 1:10. Опыты проводили по схеме примера 2. Результаты представлены в табл.4.

П р и м е р ы 12-23 (по предлагаемому способу). Проведена серия опытов по исследованию влияния температуры и продолжительности на извлечение целевых продуктов. Пробу красного шлама (состав табл. 1) влажностью 44% массой 100 г выщелачивали 500 мл 10%-ного водного раствора муравьиной кислотой при массовом соотношении сухой твердой и жидкой фаз 1 10. Опыты проводили по схеме примера 2. Результаты представлены в табл. 5.

Анализ результатов опытов позволяет сделать следующие выводы.

Выщелачивающие способности муравьиной и уксусной кислот практически одинаковы по отношению к алюминию и кальцию, но различны для скандия и редкоземельных металлов. Это объясняется тем, что муравьиная кислота является более сильной с точки зрения значения константы кислотной диссоциации. Однако доступность и меньшая токсичность уксусной кислоты делают ее не менее приемлемой для извлечения ценных продуктов из красного шлама отходов глиноземного производства. Выбранный диапазон массового соотношения сухой твердой и жидкой фаз 1 (4-18) ограничен снизу трудностью фильтрации за счет выпадения солей металлов. Увеличение этого соотношения более 1 18 нецелесообразно из-за снижения извлечения целевых продуктов и увеличения материальных потоков.

Степень извлечения целевых продуктов существенно зависит от времени выщелачивания и температуры причем чем выше температура, тем быстрее достигается максимальная степень извлечения элементов: Al 50% Сa 85% Sc 63% Yb 20% Повышение температуры свыше 80оС нецелесообразно из-за потерь реагента вследствие испарения и значительных теплозатрат, не приводящих к существенному росту степени извлечения продуктов. Выщелачивание при температуре ниже 30оС характеризуется невысокой скоростью течения процесса и требует длительного времени.

Концентрация кислоты существенно влияет на степень извлечения целевых продуктов: с ростом концентрации извлечение увеличивается. Однако использование кислоты с концентрацией более 25% нецелесообразно из-за значительного расхода кислоты, не приводящего к существенному росту извлечения целевых компонентов. Снижение концентрации менее 3% приводит к уменьшению извлечения. Поэтому с технологической точки зрения оптимальные условия выщелачивания: температура 60-80оС, концентрация кислоты 5-10% и продолжительность процесса 2 ч.

Преимуществом предлагаемого способа по сравнению с известным является упрощение процесса извлечения алюминия, кальция и редкоземельных металлов из красных шламов за счет исключения восстановительной плавки и всех операций и оборудования, непосредственно связанных с осуществлением этого процесса, а также возможность селективно извлечь из красных шламов алюминий, кальций, редкоземельные металлы путем перевода их в раствор, из которого в дальнейшем можно легко осуществить дробное непрерывное выделение отдельных целевых продуктов.

Формула изобретения

СПОСОБ ИЗВЛЕЧЕНИЯ АЛЮМИНИЯ, КАЛЬЦИЯ И РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ КРАСНЫХ ШЛАМОВ глиноземных производств, включающий выщелачивание кислотой, фильтрацию раствора и разделение извлекаемых целевых продуктов, отличающийся тем, что выщелачивание проводят с использованием водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее трех при масовом соотношении сухой твердой и жидкой фаз 1:(4-18) и концентрации кислот 3-25% при 30-80oС в течение 0,5-3,0 ч.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способу переработки скандийсодержащего алюмосиликатного сырья

Изобретение относится к комплексной переработке бокситов, а именнно к извлечению ценных компонентов из красного шлама глиноземного производства обработкой кислотными растворами
Изобретение относится к способу переработки эвдиалитового концентрата, включающему разложение его минеральной кислотой, сушку полученного геля с последующим выщелачиванием сухой массы водой
Изобретение относится к способу получения металлического скандия металлотермическим восстановлением его из хлорида скандия в среде аргона с последующим выделением из продуктов реакции

Изобретение относится к способу получения фторидного скандиевого продукта с содержанием скандия более 25% из растворов или пульп сложного солевого состава, включающему сорбцию скандия из растворов или пульп с содержанием железа 7 г/л в водной фазе на фосфорсодержащем синтетическом ионите, десорбцию скандия раствором фторида аммония, осаждение скандия из десорбата фторидом натрия
Изобретение относится к гидрометаллургической переработке минерального сырья, в частности к скандийсодержащему пироксенитовому сырью

Изобретение относится к металлургии редких металлов и может быть использовано для получения металлического скандия

Изобретение относится к металлургии редких металлов, в частности к получению металлического скандия

Изобретение относится к металлургии редких металлов и может быть использовано для получения и вакуумной очистки металлического скандия

Изобретение относится к способам извлечения легких, преимущественно алюминия, щелочноземельных, преимущественно кальция, и редкоземельных металлов из красных шламов - отходов глиноземных производств

Изобретение относится к цветной металлургии

Изобретение относится к способам извлечения легких, преимущественно алюминия, щелочноземельных, преимущественно кальция, и редкоземельных металлов из красных шламов - отходов глиноземных производств

Изобретение относится к металлургии, в частности к получению из расплава вспененного металла, например пеноалюминия

Изобретение относится к способам извлечения легких, преимущественно алюминия, щелочноземельных, преимущественно кальция, и редкоземельных металлов из красных шламов отходов глиноземных производств

Наверх