Способ получения моногидрата фосфата меди-аммония

 

Сущность: осуществляют взаимодействие между медью и карбонатом аммония в присутствии воды при соотношении компонентов, мас. медь 19-22, карбонат аммония 78-75, вода остальное. Полученную смесь перемешивают и вводят в нее 20-40% -ный раствор H3PO4 в количестве 100% от стехиометрии, смесь нагревают до 40-60°С и перемешивают в течение 2 ч. Перед отделением осадка смесь охлаждают. Выход продукта 99,9% содержание основного вещества 100% 5 табл.

Изобретение относится к технологии солей фосфорной кислоты, в частности к способам получения двойных фосфатов меди, которые могут быть использованы в качестве микроудобрений, катализаторов, химических реактивов, люминофоров и других материалов современной техники, где необходимым требованием является индивидуальность состава.

Наиболее близким к предлагаемому является способ получения моногидрата фосфата меди-аммония [1] который заключается в следующем: в 200 г (30 по Р2О5) термической Н3РО4 растворяют 10 г СuO в течение 0,5 ч при 90оС; затем смесь нейтрализуют газообразным аммиаком до рН 6,8-7,0, перемешивают суспензию еще в течение часа. Осадок отделяют, многократно промывая горячей водой. В результате осуществления способа получают CuNH4PO4H2O.

Недостатками способа-прототипа применительно к получению индивидуального моногидрата фосфата меди-аммония являются следующие: загрязнение целевого продукта примесями (фосфатами аммония и меди различной степени протонизации); низкий выход CuNH4PO4.H2O, не превышающий 14 от стехиометрии. Повысить выход целевого продукта нельзя из-за низкой растворимости CuO в Н3PO4.

Целью изобретения является повышение выхода продукта при одновременном повышении содержания основного вещества в нем. Под эффективностью способа подразумевается повышение выхода целевого продукта.

Цель достигается способом получения моногидрата фосфата меди-аммония путем смешения металлической порошкообразной меди с карбонатом аммония в присутствии воды в течение 15-20 мин до образования твердого продукта с последующим разложением его действием 20-40%-ного раствора Н3РО4, взятого в количестве 100 от стехиометрической дозы, необходимой для образования CuNH4PO4H2O. Суспензию перемешивают при 40-60оС в течение не менее 2 ч. После охлаждения осадок отделяют и сушат до постоянной массы.

Существенными признаками, общими для прототипа и данного изобретения, является образование CuNH4PO4 H2O при взаимодействии реагентов, содержащих соединения меди, аммиака и фосфорной кислоты. Причем в прототипе CuNH4 PO4H2O является лишь компонентом продукта реакции, его содержание не превышает 14% Выделение индивидуального CuNH4PO3H2O требует дополнительных затрат и приводит к большому количеству отходов производства. По предлагаемому способу получают индивидуальный СuNH4PO4H2O без примесей.

Отличительными признаками предлагаемого изобретения является: состав и порядок смешения реагентов; концентрация и доза раствора Н3РО4; температурный режим синтеза.

Существенными отличительными признаками, обеспечивающими повышение эффективности способа (за счет получения индивидуального целевого продукта с выходом 99,6 99,8 по Р2О5), являются состав и порядок смешения реагентов.

Обоснование выбора оптимальных условий получения моногидрата фосфата меди-аммония приведено в табл.1-5. При этом эффективность разработанного способа оценивали исходя из показателя выхода целевого продукта по Р2О5 и результатов химического анализа осадков, на основе которых рассчитывали состав продуктов синтеза и содержание в них основного вещества (целевого продукта).

В табл. 1 представлены данные по определению влияния последовательности смешения реагентов и их соотношения на состав твердого продукта.

Из данных, приведенных в табл.1 следует, что при смешивании реагентов в той очередности, как это рекомендовано в способе-прототипе, выход целевого продукта не превышает 14 мас. выход целевого продукта повышается в 5-7 раз при изменении порядка смешивания реагентов (пункты 2-7 табл.1), когда вначале готовят смесь порошкообразной металлической меди, карбоната аммония и воды, а затем к ней добавляют раствоp Н3РО4; наибольший выход целевого продукта достигается при создании в исходной смеси следующего соотношения между компонентами, мас. Сu 19-22; (NH4)2CO3 78-75; Н2О остальное.

В табл. 2 приведены результаты изучения влияния концентрации раствора Н3РО4 на состав продуктов синтеза и содержание в них основного вещества моногидрата фосфата меди-аммония. Из этих данных следует, что оптимальным является диапазон концентраций 20 40 мас. Н3РО4 в растворах. При более низкой концентрации раствора кислоты (10 мас.) не происходит полной декарбонизации продукта синтеза, и последний представляет собой смесь, в которую в основном входят фосфат меди-аммония и гидрофосфат меди в эквимолярном соотношении. При более высокой концентрации раствора H3PO4 (50 мас.) в продуктах синтеза содержится примесь гидрофосфата меди, а при использовании раствора кислоты с концентрацией 60 мас. Н3РО4 происходит загустевание реакционной массы, вследствие чего резко ухудшаются условия синтеза целевого продукта.

В табл.3 представлены результаты изучения влияния дозы фосфорной кислоты на состав продуктов, содержание в них основного вещества, а также на выход продуктов синтеза по Р2О5. В опытах использовали растворы фосфорной кислоты концентрацией 20 и 40 мас. Дозу Н3РО4 рассчитывали исходя из содержания меди в исходных реагентах.

Моногидрат фосфата меди-аммония образуется при использовании в синтезе раствора фосфорной кислоты, при дозе Н3РО4 100-125 от стехиометрии. Оптимальной следует считать дозу 100 при которой выход целевого продукта по Р2О5 наивысший и составляет 99,8 99,9 Установлено влияние температурного фактора на состав продуктов синтеза (табл.4). Как следует из полученных результатов, моногидрат фосфата меди-аммония стехиометрического состава образуется в широком интервале температур: от 30 до 95оС. При 20оС в течение 2 ч не происходит полной декарбонизации продукта, который представляет собой, в основном, смесь моногидрата фосфата меди-аммония и гидроксида меди. При использовании в синтезе раствора Н3РО4 концентрацией 40 мас. и температурах 70 95оС происходит удаление гидратной воды из целевого продукта, начинают формироваться новые соединения. Таким образом оптимальным температурным интервалом синтеза моногидрата фосфата меди-аммония следует считать 30 60оС.

Изучено влияние продолжительности синтеза на состав и выход продуктов (табл.5). Установлено, что при 40оС полная декарбонизация исходного продукта с образованием моногидрата фосфата меди-аммония происходит в течение не менее 2 ч, что и следует принять за оптимальную величину продолжительности синтеза. В способе-прототипе продолжительность процесса 5-6 ч.

П р и м е р 1. В реактор помещают 51,5 мас. ч. смеси, содержащей 19 мас. порошкообразной металлической меди, 78 мас. карбоната аммония и 3 мас. воды. Перемешивают реакционную массу в течение 15-20 мин затем нагревают ее до 40оС и вводят при перемешивании 38,9 мас.ч 20%-ного раствора Н3РО4 (100 от стехиометрии). Суспензию перемешивают в течение 2 ч, а затем охлаждают, отделяют осадок и сушат его до постоянной массы на воздухе или при 40оС.

Получают продукт состава CuNH4PO4 H2O с выходом 99,8 П р и м е р 2. В реактор помещают 46,5 мас.ч. смеси, содержащей 22 мас. порошкообразной металлической меди, 75 мас. карбоната аммония и 3 мас. воды. Перемешивают реакционную массу в течение 15 20 мин затем нагревают до 60оС и вводят при перемешивании 19,5 мас.ч. 40%-ного раствора Н3РО4 (100 от стехиометрии). Суспензию перемешивают в течение 2 ч, а затем охлаждают, отделяют осадок и сушат его до постоянной массы на воздуха или при 40оС.

Получают продукт состава CuNH4PO4 H2O с выходом 99,6% Использование предлагаемого способа получения моногидрата фосфата меди-аммония обеспечивает по сравнению с прототипом (он же базовый объект) следующие преимущества: повышение выхода целевого продукта с 14 до 99,6-99,8% (по Р2О5); обеспечение синтеза целевого продукта без дополнительных стадий очистки и переработки; уменьшение энергозатрат за счет снижения температуры синтеза; уменьшение объема промывных вод и отходов производства (в виде газообразного аммиака, который в способе-прототипе используется в большом избытке для нейтрализации суспензии).

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ МОНОГИДРАТА ФОСФАТА МЕДИ-АММОНИЯ, включающий взаимодействие соединений меди, аммиака и фосфорной кислоты при перемешивании и нагревании, отделение осадка, отличающийся тем, что, с целью повышения выхода продукта при одновременном повышении содержания основного вещества в продукте, в качестве соединений меди и аммиака используют порошкообразные медь и карбонат аммония, а взаимодействие сначала осуществляют между медью и карбонатом аммония в присутствии воды при соотношении компонентов, мас.

Медь 19 22 Карбонат аммония 75 78 Вода Остальное полученную смесь перемешивают и затем вводят 20 40%-ный раствор фосфорной кислоты в количестве 100% от стехиометрически необходимого для образования продукта, смесь нагревают до 40 60oС и перемешивают в течение 2 ч и перед отделением осадка смесь охлаждают.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к синтезу новых химических соединений, конкретно к двойным гидрофосфатам кобальта-марганца общей формулы Со1-хMnxHPO4 1,5H2O (0 < х 0,45), используемых в лесном хозяйстве в качестве фунгицидов пролонгированного действия для предупреждения инфекционного полегания (фузариоза) хвойных пород

Изобретение относится к новым химическим веществам координационного строения, а именно к аквааммиакатам кобальта (II) в твердом состоянии общей формулы Co3(PO4)2 xNH3 yH2O, где х 5-12; y 8-11, и к способу их получения
Изобретение относится к получению фосфатных связующих компонентов для производства строительных материалов

Изобретение относится к способу получения двойного фосфата меди-аммония, используемого в различных областях техники

Изобретение относится к способам получения натрий-кальциевых продуктов, используемых в качестве кормовых добавок в животноводстве

Изобретение относится к способу получения двойных фосфатов элементов I и IV группы общей формулы (РО/Оз, где М1 - Li, Na, К, Pb, Cs, MIV - Tl

Изобретение относится к новым химическим соединениям - к синтезу двойных фосфатов марганца-магния

Изобретение относится к новым химическим соединениям, конкретно к двойным дигидрофосфатам марганца-кобальта дигидратам общей формулы Мщ-хСох(Н2Р04)2 2Н20; где 0 х 1

Изобретение относится к способу получения двойных фосфатов титана и магния, которые используются при получении наполнителей, катализаторов и адсорбентов

Изобретение относится к производству растворов питательных солей для микробиологической промышленности

Изобретение относится к способам получения антикоррозионных пигментов, применяемых в грунтовках, композициях, лакокрасочных материалах для защиты различных металлов и сплавов от коррозии
Изобретение относится к области получения фосфатирующих концентратов и может быть использовано в машиностроении для получения фосфатного слоя с противоизносными и антифрикционными свойствами

Изобретение относится к микропористым кристаллическим силико-алюмино-фосфатным (SAPO) композициям, каталитическим материалам, включающим такую композицию, и использованию этих материалов для получения олефинов из метанола

Изобретение относится к технологии получения гексафторфоcфата лития, используемого в качестве ионогенного компонента электролитов литий-ионных химических источников тока
Изобретение относится к методам измерения температуры и касается термоиндикаторов

Изобретение относится к устройству и способу получения синтезированных предшественников продуктов синтеза при повышенных температурах

Изобретение относится к технологии фосфорнокислых солей, в частности к способу получения двойных гидрофосфатов марганца-кобальта тригидратов общей формулы Mn1-xCoxHPO4.3H2O (0 x 0,2), которые используются в качестве основы люминесцентных материалов с регулируемой интенсивностью излучения в коротковолновой области спектра в качестве химического реактива, термочувствительных красок, эмали, исходного вещества для получения дифосфатов и т

Изобретение относится к технологии получения гексафторфосфата лития - ионогенного компонента электролитов в химических источниках тока с литиевым анодом
Наверх