Способ непрерывной разливки металлов

 

Сущность: способ непрерывной разливки металлов включает подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, и измерение температуры рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар по меньшей мере на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7-1,0 и 1,4-2,2 толщины слитка от мениска металла. Определяют момент повышения температуры рабочих стенок на верхнем уровне измерения на 10-25% от рабочего значения. Через время, равное l/Vp, где l - расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м; Vр - рабочее значение скорости вытягивание слитка, м/мин, определяют момент повышения температуры на нижнем уровне измерения, и в случае ее повышения на ту же относительную величину увеличивают расход воды в кристаллизаторе на 3-35% от рабочего значения. 1 табл.

Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов.

Известен способ непрерывной разливки металлов, включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора, а также отслеживание перемещения элементов поверхности слитка вдоль кристаллизатора. В процессе разливки измеряют расходы и перепады температур охлаждающей воды на входе и выходе из каналов в рабочих стенках кристаллизатора. На основании этих данных определяют момент нарушения сплошности оболочки слитка. Расход воды на охлаждение кристаллизатора поддерживают постоянным [1] Недостаток известного способа неудовлетворительная точность определения момента нарушения сплошности или разрыва оболочки слитка в кристаллизаторе. Это объясняется тем, что при больших расходах охлаждающей воды, протекающей по каналам кристаллизатора снизу вверх, невозможно замерить перепад температуры воды, фиксирующий момент разрыва оболочки слитка. Этот перепад температур незначителен по величине и лежит ниже предела чувствительности существующих измерительных приборов. В pезультате отсутствует возможность своевременно изменять технологические параметры процесса непрерывной разливки для устранения последствий разрывов оболочки слитка. Это приводит к прорывам металла под кристаллизатором, что снижает производительность и стабильность процесса непрерывной разливки металлов.

Наиболее близким по технической сущности является способ непрерывной разливки металлов, включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора, а также отслеживание перемещения элементов поверхности слитка вдоль кристаллизатора. Вдоль и по периметру рабочей полости в медных стенках кристаллизатора устанавливаются медь-константановые термопары. В процессе непрерывной разливки фиксируют показания этих термопар и определяют температуру рабочих стенок кристаллизатора. На основании полученных данных рассчитывают толщину оболочки слитка по длине кристаллизатора. Расход воды на охлаждение кристаллизатора поддерживают постоянным [2] Недостаток известного способа неудовлетворительная точность определения момента нарушения сплошности или разрыва оболочки слитка в кристаллизаторе. Это объясняется тем, что в процессе непрерывной разливки не фиксируют последовательность по времени изменения температуры рабочих стенок кристаллизатора по его длине. Вследствие этого отсутствует возможность контролировать момент образования разрыва оболочки слитка и его перемещения по длине кристаллизатора. Это приводит к прорывам металла под кристаллизатором, что снижает производительность и стабильность процесса непрерывной разливки металлов.

Цель изобретения повышение стабильности и производительности процесса непрерывной разливки металлов.

Указанная цель достигается тем, что в кристаллизатор подают металл, вытягивают из него слиток с переменной скоростью, сообщают кристаллизаторе возвратно-поступательное движение, подают на мениск металла в кристаллизаторе шлаковую смесь, охлаждают рабочие стенки кристаллизатора проточной водой, охлаждают поверхность слитка под кристаллизатором охладителем, распыливаемым форсунками, измеряют температуру рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар. Измерение температуры рабочих стенок кристаллизатора производят как минимум на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7-1,0 и 1,4-2,2 толщины слитка от мениска металла, определяют момент повышения температуры рабочих стенок на веpхнем уровне измерения на 10-25% от рабочего значения и через время, равное l/Vp. Определяют момент повышения температуры на нижнем уровне измерения и в случае ее повышения на ту же относительную величину увеличивают расход воды в кристаллизаторе на 3-35% от рабочего значения. Расход воды в кристаллизаторе уменьшают от рабочего значения через время равное: [L-l-(0,7-1,0)H](0,4-0,9)Vp, где L длина слитка, находящегося в кристаллизаторе, м; l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м; Vp рабочее значение скорости вытягивания слитка, м/мин; Н толщина слитка, м; (0,7-1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня изменения от мениска металла в кристаллизаторе, безразмерный; (0,4-0,9) эмпирический коэффициент, учитывающий величину увеличения расхода воды в кристаллизаторе, безразмерный.

Повышение производительности и стабильности процесса непрерывной разливки металлов будет происходить вследствие своевременного увеличения расхода воды в кристаллизаторе, что гарантирует повторную кристаллизацию и залечивание участка слитка между разрывами оболочки. Последовательное фиксирование как минимум двух и более моментов увеличения значений температуры на последовательно расположенных уровнях измерения температуры рабочих стенок кристаллизатора позволяет гарантированно определять факт разрыва оболочки слитка и своевременно изменять технологические параметры процесса разливки, что позволяет избежать прорывы металла под кристаллизатором. Диапазон значений расстояния расположения первого уровня измерения температуры рабочих стенок кристаллизатора в пределах 0,7-1,0 толщины слитка от мениска металла объясняется закономерностями разрыва оболочки слитка в верхней части кристаллизатора. При меньших значениях повышение температуры в случае разрыва оболочки будет незначительным, что делает невозможным его измерение. При больших значениях инфоpмация о случае разрыва оболочки слитка будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в прямой пропорциональной зависимости от толщины слитка.

Диапазон значений расстояния расположения второго нижнего уровня измерения температуры рабочих стенок кристаллизатора в пределах 1,4-2,2 толщины слитка от мениска металла объясняется закономерностями разрыва и взаимного расположения краев обрывов оболочки по длине кристаллизатора. При меньших значениях разница в результатах измерения температуры стенок кристаллизатора будет незначительной, что делает невозможным ее измерение. При больших значениях информация о повышении температуры стенок кристаллизатора будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в обратной пропорциональной зависимости от толщины слитка.

Диапазон значений повышения температуры рабочих стенок кристаллизатора в пределах 10-25% от рабочего значения на обоих уровнях измерения объясняется закономерностями теплоотвода через рабочую стенку в случае ее контакта с целой оболочкой слитка и с жидким металлом в районе разрыва. При меньших значениях повышение температуры рабочих стенок не будет означать факт разрыва оболочки слитка. Большие значения устанавливать не имеет смысла, т.к. факт разрыва оболочки устанавливается при меньших значениях. Указанный диапазон устанавливают в прямой пропорциональной зависимости от рабочего значения температуры рабочих стенок на обоих уровнях измерения.

Диапазон значений увеличения расхода воды в кристаллизаторе в пределах 3-35% от рабочего значения объясняется закономерностями залечивания оболочки слитка в месте разрыва. При меньших значениях не будет происходить залечивание оболочки слитка. Большие значения устанавливать не имеет смысла, т.к. залечивание оболочки слитка будет происходить при меньших расходах воды в кристаллизаторе. Указанный диапазон устанавливают в прямой пропорциональной зависимости от рабочего значения расхода воды в кристаллизаторе.

Диапазон значений эмпирического коэффициента в пределах 0,7-1,0 объясняется закономерностями разрыва оболочки слитка в верхней части кристаллизатора. При меньших значениях повышение температуры в случае разрыва оболочки будет незначительным, что делает невозможным его измерение. При больших значениях информация о случае разрыва оболочки слитка будет запоздалой для соответствующего изменения технологических параметров процесса разливки, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в прямой пропорциональной зависимости от толщины слитка.

Диапазон значений эмпирического коэффициента в пределах 0,4-0,9 объясняется закономерностями залечивания оболочки слитка. При меньших значениях будет нарушаться стабильность формирования оболочки слитка на мениске металла в кpисталлизаторе, что приведет к образованию на поверхности слитков затворов, поясов, ужимин и к их браку. При больших значениях разрывы оболочки слитка не будут успевать залечиваться или срастаться, что приведет к прорывам металла под кристаллизатором. Указанный диапазон устанавливают в обратной пропорциональной зависимости от рабочего значения скорости вытягивания слитка.

Анализ научно-технической и патентной литературы показывает отсутствие совпадения отличительных признаков заявляемого способа непрерывной разливки металлов от признаков известных технических решений. На основании этого делается вывод о соответствии заявляемого технического решения критерию "изобретательский уровень".

П р и м е р. В процессе непрерывной разливки в кристаллизатор подают сталь марки 3сп и вытягивают из него слиток с переменной скоростью, сообщают кристаллизатору возвратно-поступательное движение, подают на мениск металла в кристаллизаторе шлаковую смесь на основе СаО-SiO2-Al2O3, охлаждают рабочие стенки кристаллизатора проточной водой, охлаждают поверхность слитка под кристаллизатором водой, распыливаемой форсунками, измеряют температуру рабочих стенок кристаллизатора по длине и периметру слитка при помощи медь-константановых термопар. Термопары устанавливают на двух уровнях по высоте и с шагом 200 мм по периметру кристаллизатора. Спаи термопар располагают на расстоянии 2 мм от рабочей поверхности медных стенок кристаллизатора. Сигналы с термопар обрабатывают соответствующим образом в ЭВМ.

Измерение температуры рабочих стенок кристаллизатора производят как минимум на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7-1,0 и 1,4-2,2 толщины слитка от мениска металла. Определяют момент повышения температуры рабочих стенок на верхнем уровне измерения на 10-25% от рабочего значения и через время, равное l/Vp. Определяют момент повышения температуры на нижнем уровне измерения, и в случае ее повышения увеличивают расход воды в кристаллизаторе на 3-35% от рабочего значения. Расход воды в кристаллизаторе уменьшают от рабочего значения через время равное: [L-l-(0,7-1,0)Н](0,4-0,9)Vp где L длина слитка, находящегося в кристаллизаторе, м;
l расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
Vp рабочее значение скорости вытягивания слитка, м/мин;
Н толщина слитка, м;
(0,7-1,0) эмпирический коэффициент, учитывающий расположение верхнего уровня измерения от мениска металла в кристаллизаторе безразмерный;
(0,4-0,9) эмпирический коэффициент, учитывающий величину увеличения расхода воды в кристаллизаторе, безразмерный.

В таблице приведены примеры осуществления способа непрерывной разливки металлов при различных технологических параметрах процесса разливки.

В первом примере вследствие малого увеличения расхода воды в кристаллизаторе не происходит залечивания разрывов оболочки слитка. Вследствие близкого расположения первого уровня измерения к мениску металла в кристаллизаторе повышение температуры на этом уровне в случае разрыва оболочки делает невозможным фиксирование этого разрыва. Это приводит к прорывам металла под кристаллизатором.

В примере 5 вследствие малого расстояния между уровнями измерения делает невозможным фиксирование момента разрыва оболочки слитка. Это приводит к прорывам металла под кристаллизатором.

В примере 6 вследствие отсутствия последовательного фиксирования во времени изменения температуры рабочих стенок кристаллизатора по его длине не производится фиксирование момента разрыва оболочки слитка, что делает невозможным изменение соответствующих технологических параметров процесса разливки. Сказанное приводит к прорывам металла под кристаллизатором.

В примерах 2-4 вследствие своевременного увеличения расхода воды в кристаллизаторе в оптимальных пределах после фиксирования момента разрыва оболочки слитка на двух уровнях измерения устраняются прорывы металла под кристаллизатором, что приводит к повышению производительности и стабильности процесса непрерывной разливки металлов. Применение предлагаемого способа позволяет повысить производительность процесса непрерывной разливки металлов на 1,1%


Формула изобретения

СПОСОБ НЕПРЕРЫВНОЙ РАЗЛИВКИ МЕТАЛЛОВ, включающий подачу металла в кристаллизатор, вытягивание из него слитка с переменной скоростью, сообщение кристаллизатору возвратно-поступательного движения, подачу на мениск металла в кристаллизаторе шлаковой смеси, охлаждение рабочих стенок кристаллизатора проточной водой, охлаждение поверхности слитка под кристаллизатором охладителем, распыливаемым форсунками, измерение температуры рабочих стенок кристаллизатора по длине и периметру слитка при помощи термопар, отличающийся тем, что измерение температуры рабочих стенок кристаллизатора производят по меньшей мере на двух уровнях по длине слитка, находящегося в кристаллизаторе, на расстоянии соответственно 0,7 - 1,0 и 1,4 - 2,2 толщины слитка от мениска металла, при этом при последовательном повышении температуры рабочих стенок на верхнем и нижнем уровнях измерения на 10 - 25% от рабочего значения в течение времени, равном l/Vp, увеличивают расход воды в кристаллизаторе на 3 - 35% от рабочего значения, а затем его уменьшают до рабочего значения через время определяемое по зависимости:
t=[L-l-(0,7-1,0)H]/(0,4-0,9)Vр,
где L - длина слитка, находящегося в кристаллизаторе, м;
l - расстояние между уровнями измерения температуры рабочих стенок кристаллизатора, м;
Vp - рабочее значение скорости вытягивания слитка, м/мин;
H - толщина слитка, м,
(0,7 - 1,0) - эмпирический коэффициент, учитывающий расположение верхнего уровня измерения от мениска металла в кристаллизаторе, безразмерный;
(0,4 - 0,9) - эмпирический коэффициент, учитывающий величину повышения расхода воды в кристаллизаторе, безразмерный.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к металлургии, а именно к области непрерывного литья заготовок и изделий в металлургии, и может быть использовано для изготовления сотовых труб любого назначения и других изделий, используемых в качестве материалопроводов под различными давлением и различной температуры

Изобретение относится к металлургии, а именно к области непрерывного литья заготовок и изделий в металлургии, и может быть использовано для изготовления сотовых труб любого назначения и других изделий, используемых в качестве материалопроводов под различными давлением и различной температуры
Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов

Изобретение относится к методам и средствам непрерывного горизонтального литья, в частности к оборудованию многоручьевого непрерывного горизонтального литья чугунных заготовок, и может быть использовано в условиях литейного цеха в серийном и крупносерийном производстве чугунных заготовок различных профилей

Изобретение относится к металлургии, конкретнее к непрерывной разливке тонких слябов

Изобретение относится к проблемам массообмена при создании теплонапряженных изделий, широко используемых, например, в металлургии при разработке перспективных высокоэффективных кристаллизаторов для непрерывного литья заготовок из металлов и сплавов

Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов

Изобретение относится к металлургии, а именно к способам изготовления гранулированных шлакообразующих смесей, используемых при непрерывной разливке стали

Изобретение относится к металлургии, в частности к непрерывной разливке металлов

Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов

Изобретение относится к металлургии, конкретнее, к непрерывной разливке металлов

Изобретение относится к устройству и способам электромагнитного удержания расплавленного металла и более конкретно к устройству и способу предотвращения утечки расплавленного металла через открытую сторону вертикально простирающегося зазора между двумя горизонтально разнесенными элементами, между которыми находится расплавленный металл

Изобретение относится к металлургии, конкретнее, к поточному вакуумированию металла при непрерывной разливке

Изобретение относится к металлургии, а именно к непрерывной разливке стали
Наверх