Устройство для разделения нефти и воды

 

Изобретение относится к нефтеподготовке и может быть использовано в процессе обезвоживания нефти и нефтепродуктов. Установка содержит цилиндрический корпус, насадку, сепарирующее устройство с отбойником, расположенное в верхней части корпуса, штуцеры для ввода и вывода продуктов нефтеподготовки. Устройство снабжено штуцерами для ввода теплоносителя и насадки и отвода насадки и шлама. 1 ил.

Изобретение относится к нефтеподготовке и может быть использовано в процессах обезвоживания нефти и нефтепродуктов.

Известно устройство для деэмульсации нефти, содержащее вертикальный цилиндрический корпус, подвижную насадку, штуцера для ввода и вывода продуктов нефтеподготовки [1] Целью изобретения является полное исключение при деэмульсации химических реактивов, нагрева водонефтяной эмульсии, что приведет к упрощению установки для подготовки нефти, снижению энергозатрат, а в конечном итоге приведет к повышению качества нефти.

Цель достигается тем, что, согласно изобретению, обезвоживание нефти осуществляется в устройстве, содержащем цилиндрический корпус с подвижной насадкой и со штуцерами для ввода и вывода продуктов нефтеподготовки, теплоносителя, загрузки и шлама. Один из штуцеров для ввода продуктов нефтеподготовки установлен в нижней части корпуса тангенциально к нему. В верхней части корпуса расположено сепарирующее устройство с отбойником. Для создания турбулентного режима в установке и усиления гидродинамических условий в штуцере, установленном тангенциально к корпусу, расположено сопло, увеличивающее скорость газа.

На чертеже изображена установка для подготовки нефти,общий вид.

Устройство содержит цилиндрический корпус 1, насадку 2, сепарирующее устройство 3 с отбойником 4, расположенное в верхней части корпуса 1, штуцер 5 для ввода водонефтяной эмульсии, штуцер 6 для выхода газоводонефтяной эмульсии, штуцер 7 для ввода газа, расположенный тангенциально к поперечному сечению корпуса установки, штуцер 8 для выхода отработанного газа, штуцера для загрузки 9 и выгрузки 10 насадки, штуцер 11 для отвода шлама и штуцер 12 для ввода теплоносителя.

Установка работает следующим образом. Водонефтяную эмульсию с содержанием воды 70-80% по трубопроводу направляют в емкость для предварительного отделения воды по традиционной схеме. В емкости за счет гравитационного разделения эмульсий содержание в ней воды доводится от 5 до 1% затем частично обезвоженная водонефтяная эмульсия насосом по трубопроводам подается в нижнюю часть прямоточного цилиндрического корпуса 1 устройства с подвижной насадкой 2. Турбулентный режим в устройстве, обеспечивающий гидродинамические условия, создается газом, подаваемым по трубопроводу снизу аппарата в штуцер 7, расположенный тангенциально поперечному сечению корпуса 1, при давлении, необходимом для перемешения водонефтяной эмульсии и для прохождения прямотоком газа и эмульсии через корпус 1 снизу вверх через подвижную насадку 2. Тангенциальный ввод газа позволяет использовать наряду с аксиальной составляющей радиальную, которая обеспечивает значительную интенсификацию массообменных процессов, происходящих на границе трехфазной системы, т.е. за счет центробежной силы поток газа закручивает насадку, что приводит к еще более эффективному перемешиванию водонефтяной эмульсии и создает лучшие условия для контакта глобул воды и их слияния. Газ является естественным деэмульгатором. Вверху цилиндрического корпуса 1 смонтировано сепарирующее устройство 3 с отбойником 4, позволяющее отделить газ от водонефтяной эмульсии. Отработанный газ через сепарирующее устройство 3 аппарата через штуцер 8 по трубопроводу отводится в магистральный газопровод. В результате интенсивного перемешивания водонефтяной эмульсии газом в цилиндрическом корпусе 1 с подвижной насадкой 2 происходит растворение естественных эмульгаторов и разрушение "брони", также значительно увеличивается поверхность инверсирующего экрана за счет насадки 2, работающей в режиме псевдоожиженного слоя, что создает лучшие условия для контакта глобул воды и их слияния и разделения водонефтяной эмульсии.

Предварительно подготовленная в корпусе водогазожидкостная эмульсия через штуцер 6 по трубопроводу подается в отстойник для окончательного разделения. Здесь происходит интенсивное выделение пузырьков газа из эмульсии, в связи с этим при барботаже каждый пузырек увлекает за собой вверх на поверхность нефтяную пленку, тем самым интенсифицируя процесс разделения водонефтяной эмульсии, и позволяет проводить глубокое обезвоживание. Выделяющийся из емкости газ по трубопроводу отводится в магистральный газопровод, отстоявшаяся вода из емкости по трубопроводу отводится на очистные сооружения, товарная нефть по трубопроводу подается в резервуары товарной нефти.

При использовании подвижной насадки, работающей в псевдоожиженном слое, исключается проскок газа, увеличивается массопередача. Коэффициент массопередачи у подвижной насадки в пять раз выше, чем у стационарной. Кроме того, подвижная насадка вращается в турбулентном потоке, перемещаясь по корпусу в горизонтальной и вертикальной плоскостях, при этом происходит механическое трение друг о друга, за счет чего она самоочищается, а поток выносит продукты сорбции вверх из корпуса. В случае подготовки высокосернистой нефти, содержащей большое количество парафина, для целей регенерации насадки предусматриваются штуцера 12 для ввода теплоносителя 11 и для отвода шлама.

В сепарирующем устройстве за счет резкого изменения скорости газа происходит интенсивное отделение газа от водонефтяной эмульсии.

Устройство было испытано в полупромышленных условиях. Водонефтяная эмульсия средней нефти Русаковского месторождения Тульского горизонта с плотностью 0,866 г/см3 с содержанием воды до 80% по трубопроводу подается в емкость для предварительного сброса воды. После предвари- тельного отстоя и отделения воды водонефтяная эмульсия с содержанием воды от 5 до 1 центробежным насосом с избыточным давлением 0,05 МПа с замером ее количества по трубопроводу подается в вертикальный цилиндрический прямоточный корпус устройства диаметром 150 мм, высотой 4 м, в штуцер, расположенный снизу аппарата по его оси. Устройство работает с подвижной насадкой в режиме псевдоожиженного слоя.

Газ с конечных сепараторов по трубопроводу с замером его количества под давлением 0,06 МПа подается снизу аппарата в штуцер, расположенный тангенциально поперечному сечению корпуса устройства. Вверху устройства смонтировано сепарирующее устройство, позволяющее отделить газ от водонефтяной эмульсии. Газ после сепарации отводится в магистральный газопровод, а водонефтяная эмульсия по трубопроводу подается в отстойник, где происходит разделение на газ, воду и нефть. После двухчасового отстоя с замером остаточной воды нефть откачивается в емкость для товарной нефти. Полупромышленная установка работает в динамических условиях при непрерывной подаче газа и водонефтяной эмульсии.

Полученные результаты позволяют сделать вывод о том, что впервые в практике без использования деэмульгаторов путем продувки и перемешивания водонефтяной эмульсии газом, а затем после двухчасового отстоя получается нефть высшей категории качества с содержанием воды 0,02% и содержанием соли 25 мг/л.

Предлагаемое устройство позволяет исключить использование дорогих химических деэмульгаторов, нагрев водонефтяной эмульсии, регенерацию насадки, что значительно сокращает энергозатраты, упрощает технологический процесс подготовки нефти и делает его экологически чистым, а также повышает качество нефти.

Формула изобретения

УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ НЕФТИ И ВОДЫ, включающее цилиндрический корпус с насадкой и штуцерами для ввода и вывода продуктов нефтеподготовки, причем насадка расположена с возможностью обеспечения ее подвижности, а один из штуцеров для ввода продуктов нефтеподготовки установлен в нижней части корпуса тангенциально к нему, отличающееся тем, что оно снабжено штуцерами для ввода теплоносителя и насадки и отвода насадки и шлама и сепарирующим устройством, расположенным в верхней части корпуса.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к очистке нефтесодержащих сточных вод и может быть использовано в нефтяной, химической, коммунальной и др

Изобретение относится к аппаратам для флотационного разделения материалов и предназначено для обработки воды, промышленных и бытовых сточных вод, загрязненных , главным образом, легкоразрушаемыми примесями, например гидроокисями , хлопьями активного ила и т.п

Изобретение относится к оборудованию для масло-жировой промышленности

Изобретение относится к химической технологии, п частности к очистке органических растворителей от нелетучих примесей и устройству для его осуществления

Изобретение относится к очистке сточных вод и может быть использовано для выделения из них различных примесей , например нефтепродуктов

Изобретение относится к области очистки сточных вод и может быть использовано для выделения из них различных примесей, например нефтепродуктов

Изобретение относится к химической и нефтехимической отраслям промышленности

Изобретение относится к устройствам для флотационной очистки сточных вод от нефтепродуктов, жиров, взвешенных частиц и других загрязнителей

Изобретение относится к области очистки промышленных и бытовых сточных вод и оборотных жидкостей, например, в системах водоснабжения

Изобретение относится к очистке сточных вод и может быть использовано для выделения из них различных примесей, например нефтепродуктов

Изобретение относится к очистке сточных вод и может быть использовано для выделения из них различных примесей, например нефтепродуктов

Изобретение относится к разделению многофазных текучих сред и может использоваться в нефтяной промышленности, а также при очистке сточных и питьевых вод. Текучие среды пропускают через трубку спиральной формы, чтобы осуществить коалесценцию, и затем фазы непрерывно направляют по касательной из спиральной формы в циклон или флотационную камеру, где осуществляют дополнительное разделение. Технический результат состоит в повышении эффективности разделения фаз. 5 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к очистке сточных вод с использованием пневматической флотации и может быть применено при очистке промышленных сточных вод, полученных при мойке средств хранения нефти и нефтепродуктов. Установка для очистки сточных вод от растворенных нефтепродуктов содержит вертикальную емкость 1 с патрубками слива очищенной воды 2 и принудительной подачи воздуха в ее нижней части, распределитель потока воздуха в виде перфорированной горизонтальной трубы 8, узел сбора отделенного нефтепродукта 11 и модификатор флотации 10. Узел сбора отделенного нефтепродукта 11 размещен с наружной стороны вертикальной емкости 1 и выполнен в виде лотка, прикрепленного к ней по периметру. Модификатор флотации 10 выполнен в виде коаксиально установленных цилиндрических обечаек, связанных между собой с образованием кольцевых полостей равновеликих объемов. Высота h образующей цилиндрических обечаек равна 0,75 Н высоты вертикальной емкости. Центральный осевой канал модификатора флотации 10 имеет диаметр, равный 0,2 D диаметра вертикальной емкости. На перфорированной горизонтальной трубе 8 размещен полимерный материал 9 с диаметром пор 0,005-0,1 мкм. Изобретение позволяет повысить эффективность очистки воды от растворенных нефтепродуктов. 2 ил., 1 табл.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Установка для очистки нефтесодержащих и сточных вод содержит по меньшей мере две ступени очистки, соединенные последовательно вдоль потока очищаемой воды и разделенные между собой посредством перегородок 7. Каждая ступень очистки состоит из флотореактора 1, 2, 3 и флоторазделителя 4, 5, 6, разделенных посредством перегородки 8. Аэрирующий узел 10 первой ступени очистки сообщен через насос 9 с придонной частью флоторазделителя 6 последней ступени очистки. Выход трубопровода подвода очищаемой воды 11 сообщен с придонной частью 16 флотореактора 1 первой ступени очистки. Первый выход аэрирующего узла 10 сообщен через дросселирующий клапан 26 с входом в флотореактор 1 первой ступени очистки. Вторая и последующая ступени очистки снабжены деаэрирующими узлами 31, 32. Выход каждого из деаэрирующих узлов 31, 32 расположен в днище 33, 34 и сообщен через дросселирующий клапан 26 с входом в соответствующий флотореактор 2, 3 и через регулятор давления 35 с входом в верхнюю часть деаэрирующего узла 36, 37 следующей ступени очистки. Второй выход аэрирующего узла 10 сообщен через регулятор давления 35 с входом в верхнюю часть 36 деаэрирующего узла второй ступени очистки. Выход каждого дросселирующего клапана 26 размещен у входа в соответствующий флотореактор 1, 2, 3. Площадь поперечного сечения днища каждого флотореактора 1, 2, 3 равномерно уменьшается по направлению сверху вниз. Площадь поперечного сечения флоторазделителя 4, 5, 6 не меньше площади поперечного сечения соответствующего флотореактора. Перегородки 8, отделяющие флотореакторы 1, 2, 3 от флоторазделителей 4, 5, 6, выполнены с возможностью свободного перемещения потока очищаемой воды в верхних частях флотореакторов 1, 2, 3 и флоторазделителей 4, 5, 6 одной ступени очистки. Перегородки 7, разделяющие ступени очистки, выполнены с возможностью свободного перемещения потока очищаемой воды в придонных частях флоторазделителей 4, 5, 6 и флотореакторов 1, 2, 3 различных ступеней очистки. Аэрирующий узел 10 выполнен с возможностью поддержания давления насыщения 0,3-0,6 МПа. Деаэрирующие узлы 31, 32 выполнены с возможностью поддержания давления насыщения 0,1-0,3 МПа. Изобретение позволяет повысить эффективность очистки нефтесодержащих и сточных вод. 6 з.п. ф-лы, 1 ил.

Изобретение относится к системам очистки воды и может быть использовано для очистки нефтесодержащих и сточных вод. Устройство для очистки нефтесодержащих и сточных вод содержит ступени очистки, соединенные последовательно вдоль потока очищаемой воды и отделенные между собой посредством перегородок 7, насос, аэрирующие узлы 12, 13, 14, трубопровод подвода очищаемой 15 и трубопровод отвода очищенной 16 воды. Каждая ступень очистки состоит из флотореактора 1, 2, 3 и флоторазделителя 4, 5, 6, разделенных посредством перегородки 8. Количество насосов 9, 10, 11 и количество аэрирующих узлов 12, 13, 14 соответствует количеству ступеней очистки. Выход трубопровода подвода очищаемой воды 15 сообщен с придонной частью 20 флотореактора 1 первой ступени очистки и через насос 9 первой ступени очистки с входом аэрирующего узла 12 первой ступени очистки. Входы аэрирующих узлов 13, 14 второй и последующих ступеней очистки сообщены через соответствующие насосы 10, 11 с придонными частями 26, 27 флоторазделителей 4, 5 предыдущей ступени очистки. Выход каждого из аэрирующих узлов 12, 13, 14 сообщен через дросселирующий клапан 30 с входом в соответствующий флотореактор 1, 2, 3, расположенным в нижней точке его днища 31, 32, 33. Площадь поперечного сечения днища 31, 32, 33 каждого флотореактора 1, 2, 3 равномерно уменьшается по направлению сверху вниз. Площадь поперечного сечения флоторазделителя 4, 5, 6 не меньше площади поперечного сечения соответствующего флотореактора 1, 2, 3. Перегородки 8 выполнены с возможностью свободного перемещения потока очищаемой воды в верхних частях флотореакторов 1, 2, 3 и флоторазделителей 4, 5, 6 одной ступени очистки. Перегородки 7 выполнены с возможностью свободного перемещения потока очищаемой воды в придонных частях флоторазделителей 4, 5, 6 и флотореакторов 1, 2, 3 различных ступеней очистки. Аэрирующие узлы 12, 13, 14 выполнены с возможностью поддержания давления насыщения 0,4 МПа, 0,3 МПа и 0,2 МПа в первой, второй и третьей ступенях очистки соответственно. Изобретение позволяет повысить эффективность очистки нефтесодержащих и сточных вод. 3 з.п. ф-лы, 1 ил.
Наверх