Способ определения местоположения и интенсивности зон поглощения

 

Изобретение относится к бурению геологоразведочных, нефтяных и газовых скважин. Цель изобретения - повышение достоверности результатов исследования с одновременным сокращением времени исследования. Для этого в скважине создают ударные гидродинамические волны давления. Параметры волновых полей, характеризующие взаимодействие волн давления с окружающей средой и контактной поверхностью в скважине, измеряют установленными в скважине датчиками и регистрируют в виде ударных диаграмм на экране осциллографа. По полученным осциллограммам определяют местоположение и интенсивность зон поглощения. Использование данного метода позволяет значительно сократить время исследования скважины и повысить достоверность полученных результатов исследования даже в тех случаях, когда невозможно проведение исследований традиционными методами (кавернозность, слабая прочность стенок скважины вблизи зоны исследования, высокая температура в стволе скважины). 3 ил.

Изобретение касается определения местоположения зон поглощения промывочной жидкости при бурении геологоразведочных, нефтяных и газовых скважин и может быть использовано при исследованиях скважин в период разведочного и эксплуатационного бурения.

При бурении скважины в условиях поглощения промывочной жидкости одной из основных задач для определения возможности ликвидации осложнений является определение местоположения поглощающего пласта. Известно, что поглощение промывочной жидкости в бурящейся скважине обычно устанавливают по падению давления на устье скважины, а также по частичной потере циркуляции. Этот метод основан на неоднократных замерах расходов входящей и выходящей из циркуляционной системы жидкости при различных подачах насосов.

Для выделения интервалов, в которых наиболее вероятно поглощение промывочной жидкости, проводят комплекс промыслово-геофизических методов исследования поглощающих пластов: замеры электротермометром, резистивеметром; фотографирование стенок скважины; микрокаротаж; радиоактивный каротаж; акустический каротаж.

Гидродинамические методы исследования наряду с определением интервалов зон поглощения позволяют получить сведения об интенсивности поглощающего пласта, позволяют определить его проницаемость.

В прототипе предлагаемого изобретения (авт. св. N 1208212) динамическое состояние скважины создают путем нагнетания через герметизатор устья сжатого воздуха. С помощью скважинного расходомера манометра в различных точках по стволу скважины, после установления постоянного режима нагнетания, измеряют расход воздуха выше статического уровня жидкости, а также расход и давление на обводненном участке скважины. По по- лученным данным строят расходограмму, отображающую характер изменения значений расхода воздуха в различных по глубине точках скважины. Для выполнения измерений в двух точках потребовалось время 15 мин.

Целью изобретения является повышение достоверности результатов исследования с одновременным сокращением времени исследования.

Поставленная цель достигается тем, что динамическое состояние заполненной водой скважины создают посредством гидравлического удара и по изменению величины падения импульсных гидродинамических давлений в момент пробега ударной волной зоны поглощения и значению времени ее пробега от устья скважины до зоны поглощения определяют местоположение и интенсивность зон поглощения.

Сущность предлагаемого изобретения основана на закономерностях распространения ударных волн в сжимаемой вязкой жидкости, взаимодействии импульсных гидродинамических волн давления с окружающей средой и контактной поверхностью и влиянии зон поглощения на волновые процессы в скважине.

Способ основан на использовании ударных гидродинамических волн давления, возникающих в результате ударного сжатия столба жидкости, заполняющей скважину, под влиянием внешнего воздействия в виде гидравлического удара и анализе параметров волновых полей, характеризующих особенности поведения ударных волн вблизи зон поглощения.

Для определения качественных и количественных характеристик поглощающего пласта и исследования взаимного влияния волновых процессов в скважине и потока жидкости, фильтрующегося через контактную поверхность зоны поглощения, выведены основные уравнения, описывающие неустановившееся движение жидкости в стволе скважины и в зоне фильтрации.

При рассмотрении нестационарного процесса в масштабе длины скважины принята идея И. А. Чарного о возможности считать связь между локальными характеристиками гидродинамического потока стационарной [1] Движение считается изотермическим, скважина рассматривается как вертикальная абсолютно жесткая труба.

Для вывода уравнений гидравлического удара рассмотрен выделенный двумя горизонтальными сечениями Х и Х + Х участок трубы в интервале зоны поглощения (фиг. 1). Введенные обозначения: l длина трубы, d диаметр трубы; Р среднее давление в сечении; v средняя скорость в сечении; t время; w средняя скорость фильтрации (действительная); вязкое касательное напряжение между жидкостью и стенкой трубы.

Уравнение баланса массы выделенного элемента Х запишется как (x)v(x)-(x+x)v(x+dx)-d(x)w(x)dx (1) Учитывая, что M (x)dx где М количество массы в выделенном элементе Х. Уравнение неразрывности примет вид: + (2) Уравнение баланса количества движения для выделенного элемента, используя теорему импульсов, запишется как (x)v2(x)+P(x)+ g(x)- - (x+dx)v2(x+dx)-(x+dx)-ddx (3) С учетом того, что L (x)v(x) где L количество движения в выделенном элементе, уравнение импульсов имеет вид + + g (4) Третьим уравнением в системе волновых уравнений взято уравнение -C2 (5) где С скорость звука в жидкости, заполняющей скважину.

При составлении уравнений фильтрации рассмотрен выделенный двумя цилиндрами высотой Х и радиусами r и r + r, участок поглощающего пласта (фиг. 2). Введенные обозначения: w(1), Р(1) радиальные распределения скорости и давления вокруг скважины (w(1) w; Р(1) Р, при r d/2) коэффициент пьезопроводности, коэффициент вязкости жидкости, k коэффициент проницаемости; m пористость. Уравнение сохранения массы для выделенного участка запишется как ((2rdrdx)m) (r)w(r)2rd(r)-(r)w(r+dr)2(r+dr)dx (6) После соответствующих преобразований уравнение (6) примет вид
m -r(rw) (7) Закон Дарси в дифференциальной форме имеет вид
w(1)= (8) Учитывая, что
-C2
Уравнение фильтрации примет вид
rr (9) Таким образом, система уравнений, описывающих закономерности распространения и взаимодействия с контактной поверхностью импульсных гидродинамических волн давления, имеет вид
+
+ +g
-C (10)
w(1)
rr Решая уравнения системы последовательным интегрированием конечно-разностными методами n точек (n число разбиений интервала интегрирования), вдоль оси по всей длине скважины, находят функции решения Рi(х, t), где i Исключая из Рi(х,t) составляющие экспоненциального затухания амплитуды сигнала, обусловленного потерями энергии волнового процесса в окружающую среду, определяемыми формулой
Pmi=exp (-срx) (11) где ср коэффициент затухания;
х расстояние.

Среди оставшихся составляющих Рi(х, t) находят точку i начала падения давления. Параметр х этой точки определяет расстояние от начала участка интегрирования (устья скважины) до зоны поглощения. По величине падения давления Р определяют интенсивность поглощения Q
Q P (12) Решение уравнений системы (10) численными методами с использованием ЭВМ подтвердило возможность определения местоположения и интенсивности зон поглощений.

Способ осуществляется следующим образом: В скважине, заполненной водой, с помощью источника гидравлического удара, установленного на расстоянии Хгс от устья скважины, моделируют распространение импульсных гидродинамических волн давления.Вызванная возмущением волна распространяется до забоя скважины (прямая волна) и, в момент времени
t to + (l Xгс)/С, после отражения от забоя (обратная волна), возвращается к месту установки источника. Для измерения параметров волновых полей в стволе скважины вблизи источника гидроудара на расстоянии Хд1 и на расстоянии Хд2 от устья, перемещаются глубинные части приборов с пьезоэлектрическими датчиками, сигналы с которых регистрируются на экране двухлучевого осциллографа. Зная расстояние между датчиками и определяя по осциллограмме время пробега этого расстояния ударной волной, находят скорость распространения ударной волны
C (Хд2д1)/t. В момент пробега поглощающего пласта часть энергии ударной волны расходуется на взаимодействие с контактной поверхностью зоны поглощения, так как давление на фронте ударной волны является источником вторичного гидроудара, волна давления которого проникает в каналы зоны поглощения. Это явление отмечается на ударной диаграмме падением высоты давления. Определяя по диаграмме время пробега ударной волной расстояния до начала падения давления t* и умножая его половину на С, находят расстояние S, определяющее местоположение зоны поглощения относительно устья скважины. По величине падения давления ( Р*) на ударной диаграмме определяют по формуле (12) интенсивность зоны поглощения.

Предлагаемый способ был подтвержден результатами исследований скважины N 699 Нефтекамского УБР, проведенными в период разведочного бурения. В скважине глубиной 750 м и диаметром 152 мм, заполненной водой, гидравлический удар создавали с помощью гидроснаряда, установленного на расстоянии 25 м от устья путем разрыва латунной диафрагмы столбом жидкости под давлением 7 МПа. Параметры волновых полей измеряли установленными на расстоянии 30 м и 205 м от устья скважины приборами с пьезоэлектрическими датчиками типа ЛХ-604, с собственной частотой около 200 кГц, в диапазоне допустимых давлений по 60 МПа, с площадью поверхности чувствительного элемента около 0,78 см2 и регистрировали в виде ударных диаграмм на экране осциллографа СI-69 и геофизическим фоторегистратором Н0-27.

Величины С1 и С2, полученные в результате эксперимента путем определения по ударным диаграммам времени пробега соответственно прямой и обратной ударных волн расстояния между двумя датчиками, составили
C1 1343 м/c
C2 1310 м/c
Диаграмма сигналов, измеряемых датчиком 2, и схема эксперимента показаны на фиг. 3.

Анализ диаграммы производился следующим образом: Первый скачок давления соответствует приходу в точку регистрации прямой волны в момент времени
д2гс)/С 0,134 с.

Второй скачок ударного давления соответствует приходу в точку регистрации волны, отраженной от забоя скважины в момент времени
(2l-Хд2гс)/С 0,91 с.

Влияние зоны поглощения на волновые характеристики отмечается падением высоты давления. Определив по диаграмме расстояние от начала падения давления, нашли расстояние, определяющее местоположение зоны поглощения относительно устья скважины.

S C * t*/2 (1343 0,25)/2 167,5 м.

Определив величину падения высоты давления, нашли интенсивность зоны поглощения
Q K/ Р* 0,03 1,9 0,057 м3/с.

Время, затраченное на проведение испытаний, составило доли секунды, полученные данные S и Q хорошо согласуются с теоретической оценкой.

Таким образом, изобретение позволяет значительно сократить время исследования скважины и повысить достоверность полученных результатов исследования даже в тех случаях, когда невозможно проведение исследований традиционными методами (кавернозность, слабая прочность стенок скважины вблизи зоны исследования, высокая температура в стволе скважины).


Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТОПОЛОЖЕНИЯ И ИНТЕНСИВНОСТИ ЗОН ПОГЛОЩЕНИЯ, включающий создание динамического состояния скважины, регистрацию изменяющегося параметра скважины, выделение интервалов, на которых наблюдается изменение регистрируемого параметра, определение местоположения зон поглощения по полученным данным, отличающийся тем, что динамическое состояние заполненной водой скважины создают посредством гидравлического удара, в количестве изменяющегося параметра измеряют гидродинамическое давление в скважине с последующей геристрацией диаграмм изменения гидродинамического давления по времени и определением по диаграммам скоростей распространения упругих волн в скважине, времени пробега ударной волной расстояния до начала падения давления и величины падения гидродинамического давления, местоположение зоны поглощения определяют по величине падения гидродинамического давления, а об интенсивности зон поглощения судят по скорости распространения упругих волн в скважине и времени пробега ударной волной расстояния до начала падения давления.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к горной промышленности, а конкретно к средствам контроля перетоков жидкости и газа в глубоких нефтяных и газовых скважинах

Изобретение относится к добыче нефти и может быть использовано для измерения количества продукции скважин

Изобретение относится к нефтяной промышленности и предназначено для контроля за разработкой нефтяных месторождений с рядом совместно эксплуатируемых пластов

Изобретение относится к нефтегазодобывающей промышленности и предназначается для замера дебита скважин при добыче нефти штанговыми скважинными насосами, приводимыми в действие с помощью балансирного шатунно-кривошипного станка-качалки и гидроприводных установок

Изобретение относится к исследованию скважин, поглощающих промывочную жидкость в процессе бурения

Дебитомер // 2018650
Изобретение относится к области добычи нефти и может быть использовано для учета дебита скважин, оборудованных глубинными штанговыми насосами с электрическим приводом

Изобретение относится к области нефтедобывающей промышленности, а именно к области измерения продукции (дебита) различных категорий нефтяных скважин (мало-, средне- и высокодебитных) и определения фазного и компонентного составов

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при измерении дебита двухфазных потоков эксплуатационных газовых, газоконденсатных и нефтяных скважин

Изобретение относится к исследованию скважин

Изобретение относится к нефтедобывающей отрасли и может быть использовано для контроля разработки нефтяных месторождений при определении места нарушения герметичности эксплуатационной колонны в нагнетательной скважине в интервалах, не перекрытых НКТ

Изобретение относится к скважинной разработке газовых и газоконденсатных месторождений

Изобретение относится к газодобывающей промышленности и может быть использовано для выбора оптимальной производительности скважин в нем при разработке газоконденсатных месторождений
Наверх