Способ получения фтористого водорода и оксидов металлов или кремния

 

Изобретение относится к способам получения фтористого водорода и оксидов металлов или кремния из соответствующих фторидов или отходов их содержащих. Способ включает пирогидролиз фторида металла или кремния, взаимодействие полученной пылепарогазовой смеси с углеводородом при температуре не ниже 400oС и выделение целевых продуктов соответствующего оксида и фтористого водорода. В качестве углеводорода используют природный газ или пропан, а количество углеводорода берут из расчета 1,2-1,4 атома углерода на 1 моль разлагаемой воды. Предлагаемым способом получают практически безводный фтористый водород и тонкодисперсные порошки оксидов металлов или кремния с хорошим выходом /до 99%/. 2 з.п.ф-лы, 1 табл.

Изобретение относится к неорганической химии, а именно к способам получения фтористого водородами оксидов металлов или кремния из соответствующих фторидов или отходов, содержащих фториды.

Известен способ получения фтористого водорода и двуокиси кремния путем гидролиза тетрафторида кремния в пламени при температуре 1150-1650oС [1] Фтористый водород при этом получают в виде плавиковой кислоты, для обезвоживания которой используют концентрированную серную кислоту.

Известен пирогидролиз гексафторида урана, например, процесс превращения гексафторида урана в продукт, обогащенный по UО2, и фтористоводородную кислоту в кислородно-водородном пламени, при использовании газовой смеси с объемной долей 1-10 ИF6, 30-60H22 и 10-70O2 в интервале температур 1170-1770 К при общем давлении 0,27-2,66 кПа [2] Известен также пирогидролиз трифторида алюминия и отходов производства алюминия. Твердые отходы электролиза алюминия обрабатывали при 870-1370 К воздухом, содержащим 25-75 паров воды, до полного обесфторивания. Поскольку расход паров воды составил до 60 кг на 1 кг извлекаемого фтора, концентрация фтористого водорода в конденсате должна быть очень малой [3] Наиболее близким к заявляемому способу является способ по лучения фтористого водорода и оксида элемента путем обработки исходного, вещества фторида потоком высокотемпературного тепло носителя, в том числе потоком низкотемпературной плазмы, содержащим конвертирующее вещество (в случае рассматриваемого способа водяной пар) и последующее выделение продуктов из полученной пылепарогазовой смеси [4] (прототип).

В упомянутых процессах пирогидролиза для более полного извлечения фтора из исходных соединений используют избыток воды, поэтому получают фтористый водород в виде плавиковой кислоты. Для увеличения концентрации фтористого водорода в плавиковой кислоте необходима дальнейшая ее обработка с целью обезвоживания как, например, в способе [1] концентрированной серной кислотой, требующая соответствующего аппаратурного оформления, времени и т.п.

Задачей изобретения является разработка способа получения оксидов металлов или кремния из фторидов, обеспечивающего получение при этом безводного фтористого водорода. Для этого в способе, включающем пирогидролиз фторида с выделением целевых продуктов из полученной пылепарогазой смесипылепарогазовую смесь подвергают взаимодействию с углеводородом при температуре не ниже 400oС.

В качестве углеводорода используют природный газ или пропан.

Кроме того, углеводород берут в количестве из расчета 1,2 1,4 грамм-атома углерода на 1 моль воды. При взаимодействии с углеводородом пылепарогазовой смеси, полученной при пирогидролизе фторида, имеют место следующие реакции: H2O + CH4 __ CO + 3H2 (с природным газом, основной частью которого является метан CH4), 3H2O + C3H8 __ 3CO + 7H2 (с пропаном C3H8). Способ осуществляют следующим образом.

В качестве высокотемпературного теплоносителя, содержащего пары воды, использовали плазменный поток водяного пара.

Установка включает плазмотроны мощностью по 50 кВт, реакционную камеру, питатель для подачи в реакционную камеру перерабатываемого фторида, камеру взаимодействия с углеводородом пылепарогазовой смеси, полученной в результате пирогидролиза фторида пылеуловитель для выделения оксидов, конденсатор фтористого водорода и систему утилизации сбросных газов.

Плазменный поток водяного пара, генерируемый в плазмотронах, направляют в реакционную камеру, туда же через питатель вводят перерабатываемый фторид в газообразном или распыленном состоянии, при этом поддерживают соотношение фторида и плазменного потока водяного пара, оптимальное для переработки соответствующего фторида. Полученную после пирогидролиза фторида пыле - парогазовую смесь, содержащую фтористый водород, соответствующий оксид и непрореагировавший, т. к. был взят в избытке, водяной пар, направляют в камеру взаимодействия с углеводородом, которое осуществляют при температуре не ниже 400oС.

Для получения практически безводного фтористого водорода углеводород берут из расчета 1,2-1,4 грамм-атома углерода (т.е. 1,2-1,4 моль природного газа в пересчете на метан или 0,4-0,47 моль пропана) на 1 моль разлагаемой воды.

После взаимодействия смеси с углеводородом из нее выделяют соответствующий оксид на пылеуловителе, фтористый водород и воду в конденсаторе, а оксид углерода и элементный водород продукты взаимодействия углеводорода с водой направляют в газовую горелку для сжигания в потоке воздуха. Из конденсатора конденсат направляют на анализ для определения содержания в нем HF и H2O.

На опытной установке перерабатывали фториды кремния, алюминия, железа, циркония и урана.

Время взаимодействия пылепарогазовой смеси с углеводородом не превышало 0,05 с.

Результаты опытов представлены в таблице.

Как видно из таблицы, заявляемый способ позволяет получить практически безводный фтористый водород (содержание влаги 0,5 мас) и тонкодисперсные порошки оксидов металлов или кремния с хорошим выходом.

Следует отметить, что тонкодисперсные оксиды металлов или кремния, содержащиеся в пылепарогазовой смеси, способствуют более полному ее обезвоживанию при обработке углеводородом (по видимому, выполняют функцию катализаторов реакции взаимодействия углеводорода с водой). Этот факт подтверждают опыты 16-18, в которых взаимодействию с углеводородом подвергали смесь после выделения из нее оксидов: содержание влаги в полученном конденсате в несколько раз выше.

Формула изобретения

1. Способ получения фтористого водорода и оксидов металлов или кремния, включающий пирогидролиз фторида соответствующего металла или кремния с последующим выделением продуктов из пылепарогазовой смеси, отличающийся тем, что пылепарогазовую смесь подвергают взаимодействию с углеводородом при температуре не ниже 400°С.

2. Способ по п.1, отличающийся тем, что в качестве углеводорода используют природный газ или пропан.

3. Способ по пп. 1 и 2, отличающийся тем, что углеводороды берут из расчета 1,2 1,4 моль углерода на 1 моль разлагаемой воды.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к неорганической химии

Изобретение относится к электролитическому получению алюминия, в частности к способам получения фтористого водорода из твердых фторуглеродсодержащих отходов алюминиевого производства

Изобретение относится к химической технологии и может быть использовано при получении фтористого водорода сернокислотным разложением плавикового шпата

Изобретение относится к химической технологии и может быть использовано для получения фтористоводородной кислоты при утилизации фтора и серной кислоты жидких кислых отходов в производстве редких металлов

Изобретение относится к неорганической химии, в частности к способам получения фтористого водорода

Изобретение относится к производству фтористого водорода из фторидэ-бифторида аммония сернокислотным разложением и может быть использовано в технологии получения плавиковой кислоты, приготовления травильных растворов для металлургической , стекольной промышленности

Изобретение относится к неорганической химии, в частности к способам получения фтористого водорода

Изобретение относится к химической технологии и может быть использовано для получения фтористоводородной кислоты при утилизации фтора и серной кислоты жидких кислых отходов в производстве редких металлов

Изобретение относится к автоматизации технологических процессов, а именно к автоматизации процесса разложения плавикового шпата в трубчатых печах с внешним обогревом, может быть использовано в химической промышленности в производстве фтористого водорода и позволяет повысить степень разложения плавикового шпата и снизить содержание серной кислоты в твердом продукте реакции

Изобретение относится к химической технологии сорбентов, которые могут найти применение для поглощения, разделения и концентрирования жидких и газообразных веществ

Изобретение относится к аналитической химии и позволяет повысить селективность анализа в присутствии элементного кремния и его аморфного диоксида

Изобретение относится к способам обработки аморфного диоксида кремния, используемого для изготовления оптических стекол, и позволяет получить продукт в виде прозрачных гранул однородного гранулометрического состава
Изобретение относится к промышленности синтеза минерального сырья и может быть использовано для получения синтетического материала со структурой благородного опала, в частности при последующей обработке аналога природного благородного опала, используемого, например, в ювелирной промышленности

Изобретение относится к электронной технике, а именно к получению моноокиси кремния, который используется в качестве диэлектрического и изоляционного материала при изготовлении конденсаторов, триодов и других микропленочных элементов

Изобретение относится к неорганическим оксидным материалам, имеющим и мезопоры и микропоры, или мезопоры с пониженным количеством микропор, или микропоры с пониженным количеством мезопор, и к способу их получения

Изобретение относится к способам получения кремнеземальдегидов, которые могут быть использованы в качестве твердофазной матрицы для иммобилизации ферментов и хромогенных реагентов

Изобретение относится к технологии получения высокопористых покрытий на основе систем двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, производстве материалов катализаторов, в качестве функционально-чувствительных, декоративных, фильтрующих и перераспределяющих излучение покрытий. Способ включает приготовление пленкообразующего раствора с последующим нанесением его на поверхность подложек, сушкой, отжигом и охлаждением. Свежеприготовленный пленкообразующий раствор выдерживают в течение 8-13 суток при температуре 6-8°С, сушку проводят при температуре 60°С в течение 30-40 минут с последующим нелинейным нагревом до 800-900°С в атмосфере воздуха - в первые 15-20 минут скорость нагрева максимальна и составляет 22°С/мин, в следующие 17 минут скорость нагрева поддерживают на уровне 18°С/мин, затем в течение 12 минут скорость нагрева составляет 12°С/мин, последние 40-20 минут скорость нагрева поддерживают на уровне 0,5°С/мин - и выдержкой при 800-900°С в течение 1 часа, постепенным охлаждением в условиях естественного остывания муфельной печи при следующем соотношении компонентов в пленкообразующем растворе, мас.%: тетраэтоксисилан 22,4-21,6, соляная кислота 1,3·10-4-1,2·10-4, дистиллированная вода 3,2-1, соль металла MnCl2·4Н2О 0,8-6,6, этиловый спирт (98 об.%) - остальное. Технический результат - упрощение способа получения высокопористого покрытия, более высокие значения коэффициента отражения в видимом диапазоне длин волн и коэффициента пропускания ближнего ультрафиолетового излучения с одновременным сочетанием невысоких значений показателя преломления и толщины. 1 ил., 2 пр.
Наверх