Атомный пучковый стандарт частоты с ударным возбуждением эталонного о-о-перехода

 

Использование: в технической квантовой физике при построении квантовых стандартов частоты на пучках атомов, прежде всего, водорода и щелочных металлов - цезия и рубидия. Сущность изобретения: для получения стандарта частоты с предельной стабильностью и воспроизводимостью эталонной частоты <0,0> сверхтонкого O-O перехода, с уменьшенным расходом рабочего вещества и увеличенным ресурсом работы воздействуют на пучок движущихся атомов в зоне возбуждения дополнительным третьим полем , представляющим собой дельта-образные магнитные видеоимпульсы длительностью sd меньше четверти периода эталонного O-O перехода (sd меньше 1/4 To,o), подаваемым с помощью введенных индукторов и управляемого источника дельта-импульсов тока. Схема стандарта частоты дает возможность однородного и масштабного непрерывающегося фазирования одновременно целого столба "атомов" перед областями резонатора (в частности, Рамзея) в зоне возбуждения, что увеличивает амплитуду сигнала и более чем на порядок сужает резонансную линию. 2 ил.

Изобретение относится к области технической квантовой физики и может быть использовано при построении квантовых стандартов частоты на пучках атомов, прежде всего, водорода и щелочных металлов цезия, рубидия.

Известен квантовый стандарт частоты на пучке атомов цезия (132Cs). Атомно-лучевая трубка стандарта частоты содержит следующие основные узлы: источник пучка атомов, три последовательно расположенные зоны вдоль криволинейной траектории пучка. В первой зоне зоне инверсии населенностей - происходит отсортировывание атомов с определенной проекцией магнитного момента mF, среди которых имеются рабочие атомы с mF 0. Это осуществляется с помощью сложной системы магнитов с сильным градиентом постоянного магнитного поля. Во второй зоне зоне возбуждения сигнала - происходит индуцирование квантовых O-O эталонных переходов в пучке атомов переменным полем резонатора Рамзея, которое фазирует атомы и возбуждает таким образом магнитный O-O резонанс. В третьей зоне зоне детектирования сигнала приняты меры для регистрации магнитного O-O резонанса [1] Недостатком устройства является то, что при наличии сложной системы магнитов и возникающей при этом сложной траектории пучка число рабочих атомов в пучке с mF 0 оказывается очень малым и составляет <0,01% от общего количества. Это ведет к потенциально малой величине сигнала. Кроме того, увеличение температуры источника пучка в стандарте вплоть до 140oC для увеличения сигнала не решает этой проблемы, а лишь приводит к большому расходу рабочего вещества и снижению ресурса работы стандарта частоты.

Наиболее близким техническим решением к предлагаемому является атомный стандарт частоты на пучке атомов рубидия 87Rb с лазерной накачкой и лазерным детектированием сигнала O-O перехода [2] Он содержит источник пучка атомов щелочного металла, пучок атомов с тремя последовательно расположенными зонами зоной инверсии населенностей атомов, зоной возбуждения эталонного O-O перехода, зоной детектирования сигнала этого перехода, первый источник резонансного света, связанный облучением с зоной инверсии, СВЧ резонатор с первой и второй областями осциллирующего магнитного поля установленный в зоне возбуждения, магнитную систему, которая охватывает зону возбуждения с СВЧ резонатором и обеспечивает в пучке рабочее постоянное магнитное поле удовлетворяющее условию 2,c o,o (где o,o ширина резонанса O-O перехода, гиромагнитная константа атомов), второй источник резонансного света, связанный облучением с зоной детектирования, фотоприемник, блок АПЧ, вход которого подключен к фотоприемнику, управляемый СВЧ генератор, вход которого соединен с выходом блока АПЧ, а выход с СВЧ резонатором.

Основные недостатки этого устройства обусловлены резонатором, осуществляющим полем во-первых, режим вынужденных колебаний на частоте o,o, и, во-вторых, локальное в пространстве и неодновременное во времени фазирование атомов.

Это приводит к следующему: 1) невоспроизводимости абсолютного значения частоты o,o, связанной с тем, что квантовые O-O переходы происходят в присутствии осциллирующего поля 2) возникновению нескольких разновидностей сдвигов резонансной частоты o,o; 3) значительному уширению o,o резонанса, см. фиг. 1, а.

Происхождение сдвигов и уширений связано с наличием: а) различных скоростей атомов в пучке (в результате атомы за разное время проходят области резонатора, что приводит к разбросу фаз атомов, который непосредственно характеризует уширение); б) разных траекторий атомов при пролете областей резонатора (вследствие чего атомы разных траекторий попадают в поле разной амплитуды и направления); в) влияния пространственно искаженной картины поля вблизи входного и выходного отверстий резонатора. (Этот фактор вызывает не только уширение, но и сдвиг частоты центра линии резонанса).

Вследствие упомянутых причин (1-3) на практике ширина o,o эталонного резонанса достигает значений 700 Гц. Заметим, что без этого уширение o,o составляет <1 Гц.

Известно, что значительное уширение o,o резонансной линии и сдвиги частоты o,o в режиме вынужденных колебаний уменьшают стабильность и воспроизводимость абсолютного значения выходной частоты o,o. Это препятствует повышению точности стандарта.

4) Имеет место влияние на эталонную частоту o,o соседних резонансов на частотах 1,1 и -1,-1. Для исключения этого влияния постоянное магнитное поле в области резонатора накладывают величиной H2,co,o. На практике разность частот устанавливают равной 50000 Гц. Однако это разведение частот приводит к тому, что значительная доля атомов остается на соседних подуровнях с mF 1 и поэтому не дает вклада в амплитуду сигнала O-O резонанса, что изначально ограничивает отношение сигнал/шум (S/N) и стабильность стандарта.

Кроме того, необходимость увеличения постоянного поля приводит к появлению дополнительного, магнитного сдвига частоты. Таким образом, перечисленные недостатки лежат в основе пониженной стабильности эталонной частоты o,o, пониженной воспроизводимости ее абсолютного значения o,o и пониженной точности стандарта частоты.

Технической задачей изобретения является достижение предельной стабильности и воспроизводимости абсолютного значения частоты эталонного O-O перехода, повышение точности, а также снижение расхода рабочего вещества и увеличение ресурса работы устройства.

Поставленная задача достигается тем, что в атомном пучковом стандарте частоты с ударным возбуждением сигнала эталонного O-O перехода, содержащем источник пучка атомов щелочного металла, пучок атомов с тремя последовательно расположенными зонами зоной инверсии населенностей атомов, зоной возбуждения эталонного O-O перехода, зоной детектирования сигнала этого перехода, первый источник резонансного света, связанный облучением с зоной инверсии, СВЧ резонатор с первой и второй областями осциллирующего магнитного поля установленный в зоне возбуждения, магнитную систему, которая охватывает зону возбуждения с СВЧ резонатором и обеспечивает в пучке рабочее постоянное магнитное поле удовлетворяющее условию H2,co,o (где o,o ширина резонанса O-O перехода, гиромагнитная константа атомов), второй источник резонансного света, связанный облучением с зоной детектирования, фотоприемник, блок АПЧ, вход которого подключен к фотоприемнику, управляемый СВЧ генератор, вход которого соединен с выходом блока АПЧ, а выход с СВЧ резонатором, в него дополнительно введены индукторы, вырабатывающие d-образные видеоимпульсы магнитного поля длительностью td( меньше четверти периода To,o эталонного O-O перехода () при этом индукторы установлены между зоной инверсии и первой областью СВЧ резонанса, и в зоне возбуждения между первой и второй областями осциллирующего поля резонатора, дополнительно введен управляемый источник -образных видеоимпульсов тока i, выход которого подключен к индукторам, первый вход I источника соединен с выходом управляемого СВЧ генератора, а его второй вход II соединен с выходом блока АПЧ, причем магнитная система выполнена с условием g2,c< (где Dwd ширина резонанса 0-0 перехода при действии поля Сопоставительный анализ заявляемого решения по сравнению с прототипом показывает, что предлагаемый стандарт частоты отличается от известных наличием в нем новых элементов и связей в него дополнительно введены индукторы, вырабатывающие d)-образные видеоимпульсы магнитного поля длительностью td меньше четверти периода To,o эталонного 0-0 перехода при этом индукторы установлены между зоной инверсии и первой областью СВЧ резонатора и в зоне возбуждения между первой и второй областями осциллирующего поля резонатора, дополнительно введен управляемый источник -образных видеоимпульсов тока i, выход которого подключен к индукторам, первый вход I источника соединен с выходом управляемого СВЧ генератора, а его второй вход II соединен с выходом блока АПЧ, причем магнитная система выполнена с условием g2,c<.
Эти перечисленные признаки позволяют сделать вывод о соответствии предложенного технического решения критерию "новизна".

Принципиально новым в предлагаемом атомном пучковом стандарте частоты авторы считают получение в нем ранее неизвестного свойства режима свободных колебаний атомов на частоте, обозначенной <o,o>, отличающегося наивысшей стабильностью. Этот режим осуществляется дополнительным третьим полем при этом достигаются и одновременность фазирования всех атомов, и однородность фазирования их по всему "столбу" в зоне возбуждения. В результате устраняются сдвиги частоты dw0,0, значительно уменьшается (более чем на порядок) ширина резонанса до значения o 10 Гц, поскольку рабочие атомы влетают в первую и вторую области СВЧ резонанса, находясь уже в состоянии полной сфазированности.

Это позволяет достичь предельной стабильности и воспроизводимости абсолютного значения эталонной частоты o,o, повысить точность, а также снизить расход рабочего вещества и увеличить ресурс работы устройства.

Предложенное техническое решение по совокупности признаков ограничительной и отличительной частей не было обнаружено при сравнении с другими техническими решениями в данной области технической квантовой физики. Это позволяет сделать вывод о соответствии предложенного технического решения критерию "существенные отличия".

На фиг. 1, б показан узкий контур 0-0 резонанса с шириной , полученный от действия на атомы магнитного d-видеоимпульса в частности по оси X.

На фиг. 2 представлена функциональная схема предлагаемого устройства.

Атомный пучковый стандарт частоты с ударным возбуждением эталонного 0-0 перехода содержит: 1 источник пучка атомов щелочного металла, например рубидия 87Rb; 2 пучок атомов; 3 зону инверсии населенностей длиной A в этом пучке; 4 первый источник резонансного света; зону возбуждения 0-0 перехода протяженностью B, заключающую в себе: магнитную систему 5, обеспечивающую рабочее постоянное магнитное поле в частности по оси X; индукторы 6, установленные на участке 7 пучка до первой области 8 резонатора 9 и вырабатывающие магнитные -видеоимпульсы аналогичные индукторы 10, установленные на участке 11 пучка атомов между первой 8 и второй 12 областями осциллирующего поля резонатора, в частности по оси X; 13 управляемый источник -образных видеоимпульсов тока i, первый вход I которого соединен с выходом управляемого СВЧ генератора 14, а его второй вход II соединен с выходом блока 15 АПЧ (автоматической подстройки частоты); 16 второй источник резонансного света, связанный облучением с зоной детектирования 17, имеющей длину C; фотоприемник 18, подключенный ко входу блока АПЧ.

Устройство работает следующим образом, фиг. 2.

Источник 1, выполненный в виде нагреваемого объема с коллиматором, формирует параллельный пучок 2 атомов 87Rb с прямолинейной траекторией по оси X, диаметром 0,5-1 см и угловой расходимостью в пределах 1o. Вдоль пучка 2 можно выделить три последовательно расположенные зоны различной длины A, B, C. В каждой зоне выполняется определенная операция. В зоне инверсии населенностей 3 длиной A (1 см) производят перенаселенность атомами 87Rb одного из его рабочих подуровней, например 2, mF 0>. Это осуществляется резонансным светом от первого источника 4, в качестве которого служит лазерный источник, см. [2]
Далее пучок 2 атомов в состоянии инверсии населенностей влетает в зону возбуждения эталонного O-O перехода. Она охвачена магнитной системой 5, выполненной в виде магнитного экрана с соосным соленоидом внутри.

В предлагаемом атомном пучковом стандарте значение постоянного поля задано условием H2,c<. Это означает, что частоты соседних переходов w1,1 и -1,-1 настолько приближены к центральной частоте 0,0, что все они становятся неразличимыми в пределах ширины резонанса .
Индуцирование коллективных квантовых переходов происходит на частоте <0,0> свободных колебаний. Для этого в зоне возбуждения на пучок атомов воздействуют третьим полем магнитным -видеоимпульсом длительностью td меньше четверти периода To,o эталонного O-O перехода, т.е. Поле в данном случае индуцирует ударное возбуждение синхронных квантовых переходов в коллективе атомов, см. [3]
Этот процесс воздействия осуществляется с помощью дополнительно введенных индукторов 6 и 10, которые вырабатывают одиночные d-видеоимпульсы поля Индукторы установлены на участках 7 и 11, соответственно, между зоной инверсии 3 и первой областью 8 резонатора 9, а также между первой 8 и второй 12 областями осциллирующего поля СВЧ резонатора 9. Длина пролета каждой области (1-2 см) 8 и 12 с полем мала по сравнению с общей длиной B зоны возбуждения.

Видеоимпульсы в индукторах 6 и 10 возникают в результате подачи d -видеоимпульсов тока i с выхода дополнительно введенного управляемого источника тока 13. Эти индукторы выполняются в виде одновитковых колец, соединенных параллельно. Они имеют наименьшую индуктивность и позволяют получать магнитные видеоимпульсы поля очень малой длительности t T0,0.
После действия в момент времени t1 первого одиночного магнитного -видеоимпульса поля, который обозначим все атомы в зоне возбуждения на длине B оказываются мгновенно сфазированными. Другими словами, возникает "столб" диной B мгновенно сфазированных атомов, причем в когерентность (т. е. в синфазность) вовлекаются все атомы "столба" (см. фиг. 2, заштрихованная часть пучка 2).

В результате индуцируется своеобразный летящий резонансный контур с узкой шириной Dwd (см. фиг.1, б) и излучающий свободные колебания атомов на частоте резонанса <0,0>. Образующаяся ширина контура существенно меньше ширины Dw0,0, наблюдаемой при обычном возбуждении когерентности резонатором 9 (см. фиг. 1, а).

Сужение ширины контура до значения 0,0 связано с мгновенной привязкой фаз атомов к видеоимпульсу за ультракороткое время td [3] что обеспечивает малый разброс фаз, а следовательно, и малую ширину Dw.
Мгновенно возникающий таким образом "столб" сфазированных атомов влетает в области 8 и 12 с осциллирующим резонансным полем Оно задается резонатором 9, подключенным к выходу СВЧ генератора 14, управляемого блоком 15 АПЧ. Осциллирующее поле подается с малой амплитудой, поскольку оно в предлагаемом устройстве выполняет лишь роль слабого зондирующего O-O резонанс поля. Это зондирующее поле осуществляет периодическое (с низкой частотой ) прохождение резонанса и имеет вид

здесь k индекс частотной девиации.

Тогда в зоне детектирования 16, просвечиваемой резонансным светом от второго источника 17, на фотоприемнике 18 появится (на низкой частоте ) сигнал вида Asint. Он поступает на вход блока 15 для подстройки СВЧ генератора 14 на центральную частоту которая и используется как выходная частота стандарта.

Очередной одиночный магнитный -видеоимпульс, который обозначим воздействует на пучок в момент времени t2, причем после того, как основная часть движущегося сфазированного "столба" атомов пролетит области 8 и 12 с осциллирующим полем и выйдет за пределы зоны возбуждения. При средней скорости "столба" атомов равной Vcp и длине B зоны возбуждения минимальное время tmint2 t1 между соседними одиночными -импульсами равно

Значение tmin легко выполнимо. При реально используемых величинах: B40 см, Vcp200 м/с значение tmin составит 1 мс.

Кроме того, подача очередного -видеоимпульса осуществляется синхронно с фазой сигнала эталонной частоты Для этого вход I управляемого источника -видеоимпульсов тока 13 соединен с выходом управляемого СВЧ генератора 14, а второй вход II источника 13 соединен с выходом блока 15 АПЧ.

Таким образом, возникает непрерывающийся и масштабный процесс фазирования атомов пучка на длине B.

В настоящее время в связи с получением видеоимульсов длительностью t 10-10 10-11 с [4] имеется техническая готовность создания стандартов частоты на пучках атомов 85Rb, 87Rb и 133Cs, имеющих высокие эталонные частоты квантовых O-O переходов, соответственно: 3065 МГц, 6834 МГц и 9192 МГц.

Реализация предлагаемого устройства позволяет: создать атомный пучковый стандарт частоты с ударным возбуждением эталонного O-O перехода, в котором осуществляется режим свободных колебаний атомов на частоте <0,0>. В стандарте достигаются и одновременность, и однородность фазирования всех атомов пучка в зоне возбуждения.

В результате: уменьшается ширина резонансной линии до величины 10 Гц и менее; устраняются сдвиги частоты, связанные с различием скоростей атомов и их траекторий; исключается влияние соседних резонансов на частоту <0,0>; исключается магнитный сдвиг частоты <0,0>.
Эти факторы приводят к достижению предельной стабильности и воспроизводимости абсолютного значения частоты эталонного O-O перехода, а также к повышению точности стандарта частоты.

Вследствие того, что в O-O резонанс вовлекается максимальное число атомов, вылетающих из источника пучка, в стандарте частоты реализуется максимальный коэффициент использования пучка по параметру когерентности (сфазированности). Это обстоятельство дает возможность без потери точности снизить температуру источника пучка на 50-60oC, что ведет к снижению расхода рабочего вещества и увеличению ресурса работы предлагаемого устройства.


Формула изобретения

Атомный пучковый стандарт частоты с ударным возбуждением эталонного О - О-перехода, содержащий источник пучка атомов щелочного металла, вдоль направления распространения которого расположены три зоны: зона инверсии населенностей атомов протяженностью А, зона возбуждения эталонного О - О-перехода атомов протяженностью B, зона детектирования сигнала от этого перехода атомов протяженностью С, первый источник резонансного света, связанный облучением атомов пучка с зоной инверсии, установленный в зоне возбуждения СВЧ-резонатор, например, U-образного типа со сквозными отверстиями для прохождения пучка атомов, которые по ходу пучка определяют первую и вторую области взаимодействия осциллирующего магнитного поля с атомами пучка, магнитную систему, которая охватывает зону возбуждения и обеспечивает в пучке постоянное магнитное поле , второй источник резонансного света, связанный облучением атомов с зоной детектирования сигнала, фотоприемник, блок АПЧ, вход которого подключен к фотоприемнику, управляемый СВЧ-генератор, вход которого соединен с выходом блока АПЧ, а выход с СВЧ-резонатором, отличающийся тем, что в него дополнительно введены индукторы, вырабатывающие - образные видеоимпульсы магнитного поля длительностью td меньше четверти периода T0-0 эталонного О-О- перехода при этом индукторы установлены после зоны инверсии и до СВЧ-резонатора и между первой и второй областями взаимодействия магнитного поля дополнительно введен управляемый источник - образных видеоимпульсов тока i, выход которого подключен к индукторам, первый вход I источника соединен с выходом управляемого СВЧ-генератора, а его второй вход II соединен с выходом блока АПЧ, причем магнитная система выполнена с условием
где - ширина резонанса О О-перехода при действии поля .

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к технике стабилизации частоты и может быть использовано в квантовых стандартах частоты пассивного типа

Изобретение относится к технике квантовых стандартов частоты

Изобретение относится к радиотехнике СВЧ, а именно к квантовым усилителям, и предназначено для использования в системах СВЧ

Мазер // 1704205
Изобретение относится к квантовой электронике, а именно к твердотельным квантовым усилителям

Изобретение относится к атомным стандартам частоты

Изобретение относится к квантовой электронике и может быть использовано в квантовых стандартах частоты на газовой ячейке

Изобретение относится к квантовой электронике и может найти применение при создании стандартов частоты

Изобретение относится к квантовым водородным стандартам частоты и может быть использовано при разработке и проектировании водородных стандартов частоты с автоматической подстройкой частоты резонатора квантового генератора

Изобретение относится к атомным стандартам частоты

Изобретение относится к атомным стандартам частоты

Изобретение относится к области радиоспектроскопии и может быть использовано в системах обработки импульсных сигналов

Изобретение относится к квантовой радиофизике

Изобретение относится к квантовым стандартам частоты пассивного типа и может быть использовано в рубидиевых стандартах частоты с принудительной подстройкой частоты стандарта

Изобретение относится к ионной оптике и может быть использовано в квантовых дискриминаторах частоты на основе атомных пучков, в частности, в цезиевых атомно-лучевых трубках (АЛТ)

Изобретение относится к квантовой радиофизике, более конкретно к твердотельным квантовым генераторам, генерирующим сигналы в миллиметровом и субмиллиметровом диапазонах (30 - 1500 ГГц) и может быть использовано в физике для радиоспектроскопии, для коммуникационных технологий, в радиоастрономии и локации, в биологии и химии
Наверх