Износостойкий материал

 

Изобретение относится к металлургии, в частности к материалам с высокой стойкостью к абразивному износу. Износостойкий материал содержит карбид титана, никель, углерод, железо и кобальт при следующем соотношении компонентов, мас.%: карбид титана 10-60; никель 4-15; углерод 0,2-1,5; кобальт 1-6; железо остальное. Описываемый материал характеризуется высокой износостойкостью. 1 табл.

Предполагаемое изобретение относится к металлургии, в частности к материалам с высокой стойкостью к абразивному износу.

Известен состав, изготовленный методом литья из коррозионно-стойких металлов и содержащий, мас. углерод 0,5-3,0, хром 13-30, молибден 0,7-6,0, марганец 0,1-2,0, никель 0,5-3,0, а также карбиды хрома или титана 20-30 в виде зерен размером 8-10 мкм, которые значительно повышают срок службы получаемых из материала изделий (см. например, з. Швейцарии N 432535, кл. В 02 С 7/12, 1984; з. Японии N 60-56054, кл. D 21 D 1/30, 1985).

Фирма Дефибратор (Швеция) выпускает сталь ТД, превосходящую по износостойкости другие известные материалы, которая содержит, мас. углерод 1,7; хром 16,5; никель 2,2; молибден 0,7; титан 1,7. При этом в готовом изделии в результате термической обработки хром и титан содержатся в виде первичных и вторичных карбидов (FeCr)3C и TiC в количестве 20% (см. доклад ВЕЙНО Лампе "Сорта стали для сегментов размалывающих дисков").

Недостатком известных решений является сложность регулирования физико-механических характеристик материалов. Одним из методов повышения физико-механических характеристик в сталях является введение карбидов тугоплавких металлов в процессе разливки, в результате чего получается механическая смесь двух компонентов, в которой карбиды являются составной частью. Однако распределение карбидов по массе металла неравномерно и является трудноуправляемым процессом, поэтому структура полученного металла неоднородна и не обеспечивает стабильности полученных свойств, что ведет к снижению срока службы изделий, ухудшает качество массы.

Наиболее близким по совокупности признаков к заявляемому является износостойкий материал, содержащий карбид титана, железо, никель, кремний и углерод в следующем соотношении, мас.

Железо 13,26-44,11 Никель 2-15 Кремний 0,32-1,5 Углерод 0,09-0,35 Карбид титана остальное.

Недостатком данного материала является сложность его изготовления, в частности длительный размол шихты с твердосплавными шарами (до 72 ч), которое может изменить химический состав стали и, следовательно, структуру связки после спекания, что затрудняет выбор режимов термической обработки. Предварительное спекание в водороде при температуре 650-700oC в течение 30 мин не придает прессовкам достаточной прочности. Вместе с тем относительно узкий интервал варьирования содержания углерода затрудняет выбор оптимальной температуры спекания.

Заявляемый износостойкий материал, содержащий железо, карбид титана, никель и углерод отличается тем, что он дополнительно содержит кобальт при следующем соотношении компонентов, мас.

Карбид титана 10-60 Никель 4-5 Углерод 0,2-1,5 Кобальт 1-6 Железо остальное Предлагаемый состав, содержащий карбид титана в качестве наполнителя и остальные компоненты в качестве связующего, позволяет повысить износостойкость материала и упростить технологию получения из него изделий.

Введение в состав материала кобальта, взятого в количестве 1-6 мас. усиливает пластичность связующей, облегчает протекание пластической деформации, обеспечивает равномерность распределения атомов углерода, способствует уменьшению остаточного аустенита настолько и в таких пределах, которые обеспечивают значительное повышение уровня износостойкости. При снижении содержания кобальта в порошковой стали ниже 1,0 мас. увеличивается содержание остаточного аустенита после спекания композиции (30-40%), что ухудшает износостойкость. В случае содержания кобальта более 6,0 мас. сталь приобретает хрупкость, что также приводит к снижению износостойкости средства, но из-за выкрашивания связующей и зерен карбида титана.

При содержании в материале никеля более 15 мас. понижается точка начала мартенситного превращения, повышается процент остаточного аустенита, что приводит к ухудшению износостойкости, быстрой выработке связующего. При содержании никеля менее 4,0 мас. у связующей снижается вязкость, повышается хрупкость, что способствует снижению износостойкости и ухудшению качества получаемой массы при измельчении.

Наличие в материале графита в количестве 0,2-1,5 мас. придает твердость связующей.

Предлагаемое техническое решение характеризуется следующими примерами конкретного выполнения.

Для приготовления шихты использовали коллоидально-графитовый препарат марки С-1 ОСТ 6-09-431-75, порошок никеля карбонильного марки ПНК-ОТ4 ГОСТ 9722-79, порошок кобальта ПК-1 ГОСТ 9721-79, порошок железа марки ПЖРВ 2.200.26 ТУ 14-1-38-82-85, порошок карбида титана ТУ 48 А3 СССР 14-81 крупностью 10-60 мкм. При уменьшении размеров зерен карбида титана ниже 10 мкм увеличивается расход электроэнергии на размол, становится трудно получать требуемую степень помола, масса начинает "пригорать" в зоне размола. При увеличении размера зерен наполнителя более 60 мкм он начинает выкрашиваться, ухудшается износостойкость.

Шихту получали механическим смешиванием компонентов в двухконусном смесителе. Прессование образцов в форме цилиндров диаметром 15 мм и высотой 20 мм проводили при давлении 400 МПа. Полученные образцы спекали вначале в атмосфере осушенного водорода с точкой росы 30oC при температуре 800oC в течение 1 ч, а затем в вакууме при температуре 1380-1470oC в течение 30 мин.

Для экспериментальной проверки заявляемого состава были подготовлены 32 типа образцов с различным соотношением компонентов (см. таблицу). Составы сплавов и результаты их испытаний на абразивный износ представлены в таблице (примеры 1-24 предлагаемый состав; 25-30 сплавы с запредельным содержанием компонентов связки; 31-32 сплавы с запредельным содержанием карбида титана).

Износостойкость (абразивный износ) определяли по методике фирмы "Сундс Дефибратор".

Испытания проводились при следующих условиях:
частота вращения диска 250 об/мин;
шлифовальная бумага с абразивной поверхностью из карбида кремния со средней зернистостью 79 мкм;
держатель образца вращается с частотой 52 об/мин в направлении, противоположном направлению вращения шлифовального диска;
усилие на образец составляет 9,1 г/мм2;
общее время испытаний 2 мин, регистрация уменьшения массы образца через каждые 30 с.


Формула изобретения

Износостойкий материал, содержащий железо, карбид титана, никель, кобальт и углерод, отличающийся тем, что он содержит компоненты в следующем соотношении, мас.

Карбид титана 10-60
Никель 4-15
Углерод 0,2-1,5
Кобальт 1-6
Железо Остальное

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к материалам с высокой стойкостью к абразивному износу и коррозии, и может быть использовано, например, при изготовлении секторов размалывающей гарнитуры дисковых мельниц для приготовления древесных полуфабрикатов

Изобретение относится к области порошковой металлургии, в частности к твердым сплавам

Изобретение относится к порошковой металлургии, в частности к износостойким порошковым материалам для режущего инструмента на стальной основе

Изобретение относится к порошковой металлургии, в частности к износостойким материалам для покрытий

Изобретение относится к созданию композиционных материалов (КМ), а именно КМ с металлической матрицей на основе хрома, армированной волокнами, применяемых для изготовления деталей горячего тракта ГТД и других высокотемпературных конструкций, длительно или кратковременно работающих при температурах до 1600oС

Изобретение относится к металлургии, в частности к технологии получения многокомпонентных металлических композиций, содержащих галлий

Изобретение относится к области цветной металлургии и может быть использовано при получении борсодержащей лигатуры на основе алюминия, например алюминий-титан-бор

Изобретение относится к цветной металлургии и может быть использовано при производстве фольги, слитков и фасонных отливок из алюминия и его сплавов

Изобретение относится к цветной металлургии, а именно к технологии производства доэвтектических алюминиево-кремниевых сплавов, содержащих один или более элементов из группы тугоплавких и легкоплавких металлов

Изобретение относится к металлургии и получению композиционных материалов скелетного типа, когда армирующий каркас из углеграфита пропитывают матричным сплавом

Изобретение относится к порошковой металлургии и может быть использовано в электротехнической, электронной промышленности и машиностроении
Наверх