Лазерно-люминесцентный анализатор

 

Использование: изобретение относится к аналитической химии, может быть использовано для определения полиароматических углеводородов (ПАУ) в природных, питьевых и сточных водах и позволяет экспрессно определять следовые количества ПАУ при комнатной температуре с высокой чувствительностью и минимальным временем пробоподготовки в динамическом режиме. Сущность заключается в том, что лазерно-люминесцентный анализатор, включающий лазер с генератором импульсов, расположенную по оси лазера кварцевую пластину, первичный светофильтр, размещенную ему соосно цилиндрическую рабочую кювету, установленные у ее боковой поверхности последовательно вторичный светофильтр и фотоумножитель, соединенный с источником питания и блоком регистрации сигнала, снабжен кварцевой пластиной, расположенной соосно первой кварцевой пластине, первичным светофильтром, размещенной соосно ему цилиндрической кюветой сравнения, установленными у боковой ее поверхности последовательно вторичным светофильтром и фотоумножителем, перистальтическим насосом, соединенным трубопроводом с нижней частью рабочей кюветы, трубопроводом, соединяющим верхнюю часть рабочей кюветы с нижней частью кюветы сравнения, и блоком аналоговой обработки сигналов. Вход блока соединен с выходами фотоумножителей и выход соединен со входом блока регистрации сигналов, при этом выход источника питания соединен с входом второго фотоумножителя, а выход генератора импульсов соединен с входом блока аналоговой обработки сигналов, причем длина lo, l1 трубопроводов, соединяющих соответственно насос с рабочей кюветой и кюветы определяют по формулам. 1 ил., 1 табл.

Изобретение относится к аналитической химии и может быть использовано для определения полиароматических углеводородов (ПАУ) в природных, питьевых и сточных водах.

Известен лазерно-люминесцентный анализатор, включающий блок возбуждения люминесценции, блок размещения образца и блок регистрации сигнала [1] Блок возбуждения люминесценции состоит из лазера (например, ЛГИ-21) с блоком питания и зеркала, установленного по оси лазера. Блок размещения образца состоит из кожуха, имеющего в верхней части окно для лазерного луча и на боковой поверхности окно с линзой, сосуда Дюара, установленного в кожухе, и пробирки с образцом расположенной в сосуде коаксиально верхнему окну. Блок регистрации сигнала включает последовательно соединенные спектрометр (ДФС-12), имеющего фотоумножитель (ФЭУ-17А), усилитель фототока (У5-9) и самописец (КСП-4).

Недостатками известного анализатора является невозможность проведения измерения содержания ПАУ в потоке при комнатной температуре и без предварительной пробоподготовки. Кроме того, анализатор имеет большие габариты за счет наличия стандартного спектрометра (ДФС-12), что не позволяет его использовать в полевых условиях.

Наиболее близким техническим решением к предложенному является лазерно-люминесцентный анализатор, включающий лазер с генератором импульсов, расположенную по оси лазера кварцевую пластину, первичный светофильтр, размещенную ему соосно цилиндрическую рабочую кювету, установленные к ее боковой поверхности последовательно вторичный светофильтр и фотоумножитель, соединенный с источником питания для определения урана в водах.

Анализатор предназначен для определения урана в водах.

Недостатком известного анализатора является невозможность экспрессного определения следовых количеств ПАУ из-за собственного свечения природных, питьевых и сточных вод.

Задачей предлагаемого технического решения является разработка лазерно-люминесцентного анализатора определения микроколичеств природных и питьевых вод, удовлетворяющего следующим требованиям: экспрессное определение следовых количеств ПАУ при комнатной температуре с высокой чувствительностью и минимальным временем пробоподготовки.

Указанная задача решается тем, что лазерно-люминесцентный анализатор, включающий лазер с генератором импульсов, расположенную по оси лазера кварцевую пластину, первичный светофильтр, размещенную ему соосно цилиндрическую рабочую кювету, установленные у ее боковой поверхности последовательно вторичный светофильтр и фотоумножитель, соединенный с источником питания и блоком регистрации сигнала, дополнительно снабжен кварцевой пластиной, расположенной соосно первой кварцевой пластине, первичным светофильтром, размещенной соосно ему цилиндрической кюветой сравнения, установленными у боковой ее поверхности последовательно вторичным светофильтром и фотоумножителем, перистальтическим насосом, соединенным трубопроводом с нижней частью рабочей кюветы, трубопроводом, соединяющим верхнюю часть рабочей кюветы, трубопроводом, соединяющим верхнюю часть рабочей кюветы с нижней частью кюветы сравнения, и блоком аналоговой обработки сигналов, вход которого соединен с выходами фотоумножителей и выход с входом блока регистрации сигналов, при этом выход источника питания соединен с входом второго фотоумножителя, а выход генератора импульсов соединен с входом блока аналоговой обработки сигналов, причем длина lo, l1 трубопроводов, соединяющих соответственно насос с рабочей кюветой и кюветы определяют по формулам (1) где 1 время получения аналитического сигнала; V скорость подачи потока пробы; Vк объем кювет; S площадь сечения трубопроводов (2) где время релаксации системы, объем трубопровода, соединяющего насос с рабочей кюветой.

Благодаря наличию в анализаторе двухлучевой системы, позволяющей увеличить отношение сигнал-шум, а также выполнению трубопроводов определенной длины, заявляемое техническое решение приобретает новые свойства, получение которых не обеспечивает прототип и другие технические решения, а именно создается возможность определять микроколичества ПАУ на фоне собственного свечения природных и питьевых вод.

Для обеспечения воспроизводимости и правильности результатов анализа в соответствии с приведенными выше формулами (1) и (2), параметры анализатора, а именно: объем измерительной кюветы и кюветы сравнения, длина трубопроводов lo и l1 и площадь сечения трубопровода S выбирают таким образом, чтобы при фиксированной скорости прокачивания исследуемого раствора (например, V 1 мл/с) время отклика прибора 1 было равным 15-20 с, а время релаксации 120 с. Причем значение t сохраняется при достижении трубопровода l1 2 с. Указанные значения t1 и можно считать оптимальными, обеспечивающими экспрессность анализа на предлагаемом анализаторе.

Значение h (указанное на чертеже) соответствует размеру окна ФЭУ для того, чтобы было максимальное заполнение световым потоком последнего.

При расчете lo и l1 исходят из целесообразности минимальное время отклика и минимальное время релаксации.

Предложенный анализатор позволяет определять микроколичества ПАУ в реальных объектах (природные, питьевые воды) при комнатной температуре в проточном режиме с пределом обнаружения менее 10-9 г/мл.

На чертеже представлен общий вид анализатора.

Лазерно-люминесцентный анализатор состоит из лазера 1, генератора импульсов 2, расположенной по оси лазера кварцевой пластины 3, первичного светофильтра 4, размещенной ему соосно цилиндрической рабочей кюветы 5, установленных у ее боковой поверхности последовательно вторичного светофильтра 6 и фотоумножителя 7, имеющего источник питания 8. Анализатор также имеет кварцевую пластину 9, расположенную соосно первой кварцевой пластине 3, первичный светофильтр 10, размещенную соосно ему цилиндрическую кювету сравнения 11, установленный к боковой ее поверхности последовательно вторичный светофильтр 12 и фотоумножитель 13, перистальтический насос 14, соединенный трубопроводом 15 с нижней частью рабочей кюветы 5, трубопровод 16, соединяющий верхнюю часть рабочей кюветы 5 с нижней частью кюветы сравнения 11, блок аналоговой обработки сигналов 17, вход которого соединен с выходами фотоумножителей 7 и 13 и выход с входом блока регистрации сигналов 18, выполненный в виде цифрового вольтметра или самописца. Выход генератора импульсов 2 соединен с входом в блок аналоговой обработки сигналов 17.

Известно, что большинство ПАУ поглощают в области 250-400 нм, а спектры люминесценции этих соединений расположены в области 350-550 нм. В качестве первичных светофильтров 4 и 10 были выбраны ультрафиолетовое стекло (УФС-2), пропускание которых в полосе 337 нм равно 80% Выбор светофильтра обусловлен спектральной характеристикой источника возбуждения, в качестве которого используют азотный лазер 1 ЛГИ-21 ( 337 нм). Для подавления сопутствующих сигналов рассеянного возбуждения излучения и спонтанного комбинационного рассеяния при определении ароматических органических соединений с сопряженными связями (например, полициклических, гетероциклический углеводородов) используют вторичные светофильтры желто-зеленое стекло (ЖЗС-6) и сине-зеленое стекло (СЗС-21), которые пропускают излучение всех исследуемых веществ и не пропускают полосу комбинационного рассеяния воды (380 нм).

Анализатор работает следующим образом. Люминесценцию анализируемых образцов возбуждают короткими (10-8 с) интенсивными импульсами, генерируемыми азотным лазером 1. Лазерное излучение кварцевыми пластинами 3 и 9 через светофильтры 4 и 10 направляют вертикально через кюветы 5, 11, одна из которых рабочая 5, другая кювета сравнения 11. Излучение через вторичные светофильтры 6 и 12 попадает на фотоумножители 7 и 13 (например, ФЭУ-39А). Постоянная времени регистрирующей системы составляет t 10 нс. Сигнал с фотоумножителей 7 и 13 поступает на блок аналоговой обработки 17, который измеряет разность выходных сигналов рабочего канала и канала сравнения в режиме стробирования с последующим накоплением периодических сигналов. Полученная информация поступает на блок регистрации сигналов (цифровой вольтметр) 18. При этом блок аналоговой обработки 17 выполняет еще и следующие функции: управление работой лазера (запуск в соответствии с системой измерения);
установление времени задержки в интервале 1-128 мкс;
установление времени стробирования в интервале 0,1-100 мкс;
установление времени измерения в интервале 10-100 с.

В качестве примера для оценки возможностей предлагаемого лазерно-люминесцентного анализатора было проведено определение 3,4-бензпирена в различных типах вод. Выбор 3,4-бензпирена обусловлен тем, что он является обязательным компонентом всех типов нефтей.

Для приготовления эталонного раствора 3,4-бензпирена в воде используют препарат фирмы Флука. Исходный раствор содержит 0,1 мг 3,4-бензпирена в 1 мл этилового спирта. Для приготовления растворов 3,4-бензпирена в воде 1 мл эталонного раствора помещают в мерную колбу на 100 мл и доводят объем до метки дистиллированной водой, получают раствор 3,4-бензпирена концентрацией 1 10-7 г/мл. Полученный раствор хранят при температуре 4 o С и разбавляют до нужной концентрации непосредственно перед проведением анализа.

Для построения градуировочных графиков готовили растворы 3,4-бензпирена в питьевой и морских водах в интервале концентраций 5 10-10 1 10-7 г/мл.

В две цилиндрические кварцевые кюветы 5 и 11 наливают равные объемы анализируемой воды и помещают их в кюветное отделение анализатора. При помощи ручки "баланс" блока аналоговой обработки 17 уравнивают сигналы, поступающие с фотоумножителей 7 и 13, (блок регистрации сигналов (цифровой вольтметр) 18 показывает значения близкие к нулю) и производят накопление 3000 импульсов люминесценции дифференциального сигнала (в этих условиях наблюдается наилучшее соотношение с/ш). Затем в кювету 7 помещают растворы, содержащие соответствующие количества 3,4-бензпирена, и по показаниям блока 18 определяют относительную интенсивность люминесценции при времени задержки t 3 мкс от момента возбуждения и длительности строба t 4 мкс, которые выбирают с учетом того, что длительность истинного сигнала затягивают введением РС-цепочки для повышения чувствительность фотоумножителей 7 и 13. По полученным данным строят калибровочный график зависимости интенсивности люминесценции дифференциального сигнала от содержания 3,4-бензпирена в дистиллированной, питьевой и морской водах.

Градуировочные графики линейны в большом интервале концентраций (110-7 510-10 г/мл). Следует отметить, что зависимость интенсивности люминесценции от концентрации 3,4-бензпирена выражается уравнением I bC. Однако при анализе образцов воды, обладающих интенсивным собственным свечением, не всегда удается получить нулевое значение показаний вольтметра при уравнивании сигналов, поступающих с фотоумножителей, поэтому уравнение линейной зависимости имеет вид I a + bC, т.е. коэффициент a характеризует степень интенсивности свечения фона.

При определении следовых количеств органических веществ адекватные методы анализа отсутствуют, особенно при анализе объектов природного происхождения, поэтому для проверки правильности полученных результатов использовали метод внутреннего стандарта ("введено-найдено"), а также сравнение с результатами анализа, полученными на спектрофлуориметре IY-3 CS с использованием метода синхронной спектрофлуориметрии. В таблице представлены результаты определения 3,4-бензпирена в водах ( P 0,95).

Из таблицы следует, что при анализе 3,4-бензпирена в водопроводной и морских водах результаты определения характеризуются худшей воспроизводимостью и правильностью, чем при анализе аналогичных соединений 3,4-бензпирена в дистиллированной воде. Это эффект можно объяснить наличием интенсивного собственного свечения анализируемых вод, причем чем интенсивнее свечение, тем хуже результат анализа (например, результаты анализа в водопроводной и морской воде). Водопроводная вода обладает более интенсивным свечением, чем морская, и в водопроводной воде труднее уравнивать сигналы, поступающие с фотоумножителей.

Из таблицы также видно, что разбавление улучшает результаты анализа.

С одной стороны, разбавление уменьшает интенсивность собственного свечения анализируемых образцов, позволяя уравнять интенсивность сигналов, поступающих с фотоумножителей (в таблице результаты определения 3,4-бензпирена с морской воде и в морской воде, разбавленной в 10 раз), с другой - разбавление резко уменьшает количество тушащих примесей (в таблице результаты определения различных содержаний 3,4-бензпирена в водопроводной воде и в водопроводной воде, разбавленной в 10 раз).

Кроме того, из таблицы видно, что на предлагаемом анализаторе результаты анализа имеют лучшую правильность, чем результаты, полученные при использовании метода синхронной спектрофлуориметрии. Определения воспроизводимости методом синхронной спектрофлуорметрии не были проведены, однако согласно литературным данным, при использовании метода синхронной спектрофлуориметрии не достигает величины менее 0,30, а в нашем случае (см. табл.) Sr бывает значительно меньше, например, при определении содержания 3,4-бензпирена в области концентраций 10-8 10-9 г/мл.

Предложенный лазерно-люминесцентный анализатор для определения полиароматических углеводородов на фоне собственного свечения природных, питьевых и сточных вод основан на использовании дифференциального аналитического сигнала. Применение периодического импульсного возбуждения совместно с накоплением сигналов позволило проводить определение ПАУ в интервале концентраций 5 10-10 1 10-7 г/мл с пределом обнаружения 5 10-10г/мл. Определение можно проводить как в статическом, так и в динамическом режимах.

Кроме того, при экспрессном контроле за содержанием ароматических соединений с сопряженными связями в сложных природных объектах (природные и сточные воды) на уровне ПДК анализатор работает по методологии скрининга, которая допускает неправильные положительные результаты, но полностью исключает неправильные отрицательные результаты. Для получения точного результата содержания той или иной примеси все пробы, давшие "положительную" реакцию, могут быть проанализированы любым специфичным методом.


Формула изобретения

Лазерно-люминесцентный анализатор, включающий лазер с генератором импульсов, первую кварцевую пластину, первый первичный светофильтр, оптически связанный с лазером посредством первой кварцевой пластины, цилиндрическую рабочую кювету, размещенную соосно с первым первичным светофильтром, первый вторичный светофильтр и первый фотоумножитель, установленные последовательно у боковой поверхности рабочей кюветы, источник питания и блок регистрации, при этом выход источника питания соединен с входом первого фотоумножителя, отличающийся тем, что анализатор дополнительно снабжен второй кварцевой пластиной, дополнительным первичным светофильтром, цилиндрической кюветой сравнения, дополнительным вторичным светофильтром, вторым фотоумножителем, перестальтическим насосом, первым трубопроводом, вторым трубопроводом и блоком аналоговой обработки сигналов, при этом вторая кварцевая пластина расположена соосно с первой кварцевой пластиной, дополнительный первичный светофильтр размещен соосно с кюветой сравнения, дополнительный вторичный светофильтр и дополнительный фотоумножитель последовательно установлены у боковой поверхности кюветы сравнения, перистальтический насос соединен посредством первого трубопровода с нижней частью рабочей кюветы, а верхняя часть рабочей кюветы посредством второго трубопровода соединена с нижней частью кюветы сравнения, вход блока аналоговой обработки сигналов соединен с выходами первого и второго фотоумножителей, а выход блока аналоговой обработки сигналов соединен с входом блока регистрации сигналов, выход источника питания соединен с входом второго фотоумножителя, выход генератора импульсов соединен с входом блока аналоговой обработки сигналов, причем длина первого трубопровода l0 и длина второго трубопровода l1 соответственно определены по формулам

где 1 время получения аналитического сигнала, с;
v скорость подачи потока пробы, м3/с;
Vk объем кювет, м3;
S площадь сечения трубопроводов, м2;

где время релаксации системы, с;
Vтр.о объем трубопровода, соединяющего насос с рабочей кюветой, м3.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к физической химии высокомолекулярных соединений, а именно к определению гидрофобности белков, в том числе растительных соевых, широко используемых в пищевой промышленности, с помощью методов люминесценции

Изобретение относится к области аналитической химии и техники и может быть использовано в медицинской диагностике, клинической медицине, в биотехнологии, пищевой промышленности, ветеринарии, экологических исследованиях
Изобретение относится к аналитической химии, к способам определения ионов металлов в растворах, и может быть использовано при разработке оптических сенсоров, дающих чувствительный, экспрессный отклик на изменение концентрации урана, свинца, ртути в растворах

Изобретение относится к технике аналитического контpоля вещества и может быть использовано в горно-перерабатывающей и стекольной промышленности, при геолого-разведочных работах для экспрессного определения минеральных микропримесей в промышленном кварцевом сырье

Изобретение относится к аналитической химии, а именно к способам качественного определения циклодола

Изобретение относится к способам контроля качества сельскохозяйственных культур, в частности к способам измерения спектральных характеристик клубней и определения по ним зрелости

Изобретение относится к полупроводниковой технике и может быть использовано для контроля излучающих полупроводниковых структур, предназначенных для изготовления фотоэлектронных приборов

Изобретение относится к экспериментальным методам ядерной физики и может быть использовано при решении различных задач технической физики
Изобретение относится к экспериментальным методам физики и может быть использовано при создании систем маркировки и идентификации контролируемых объектов

Изобретение относится к аналитической химии, а именно к качественному и количественному определению нитропроизводных полициклических ароматических углеводородов (нитро-ПАУ) в сложных смесях и растворах

Изобретение относится к установке контроля для отбора проб и определения наличия некоторых веществ, например остатков загрязнений в емкостях, например, в стеклянных или пластмассовых бутылках

Изобретение относится к медицине, а точнее к области бесконтактной клинической диагностики злокачественных новообразований и области их локализации in vivo в живом организме на основе флуоресценции эндогенных порфиринов

Изобретение относится к области измерительной техники

Изобретение относится к медицинской технике, а именно к спектрофотометрическим приборам для контроля (диагностики) состояния биологической ткани

Изобретение относится к биотехнологии

Изобретение относится к аналитической химии
Наверх