Способ получения 1,1,1,3,3-пентафторпропана

 

Изобретение относится к способу получения 1,1,1,3,3-пентафторпропана (хладон - 245fa), являющегося озонобезопасным хладоном, который может быть использован в качестве хладоагента, пропелента, вспенивающего агента и растворителя. Техническая задача, решаемая изобретением, - повышение выхода целевого продукта, упрощение процесса производства 1,1,1,3,3-пентафторпропана и расширение сырьевой базы. Данная задача решается путем взаимодействия 1,1,1,3,3 -пентахлорпропана с фтороводородом при температуре процесса 50-160oС и давлении 5-25 кгс/см2 в присутствии катализатора, состоящего из смеси пятихлористой сурьмы и фтороводорода в мольном соотношении SbCL5/HF от 1-70 до 1-1,8 и при нагрузке на катализатор 0,08-1 кг 1,1,1,3,3-пентахлорпропана/кг SbCl5 x час. 2 табл.

Изобретение относится к способу получения 1,1,1,3,3-пентафторпропана (хладон 245fa), являющегося озонобезопасным хладоном, который может быть использован в качестве хладоагента, пропелента, вспенивающего агента и растворителя.

Известен способ получения 1,1,1,3,3-пентафторпропана реакцией 1,1,1,3,3-пентафтор-2,2,3-трихлорпропана с водородом (см. патент США N 2942036). Недостатком способа является дефицитность хлорфторорганического сырья, большой расход водорода (требуется 1,5-4 моля водорода на 1 моль сырья) и проблдема его дальнейшей утилизации, высокие температуры, вызывающие коррозию оборудования, невысокий выход целевого продукта (до 60%).

Способа получения 1,1,1,3,3-пентафторпропана путем фторирования 1,1,1,3,3-пентахлорпропана фтороводородом на сурьмяном катализаторе не выявлено.

Техническая задача, решаемая изобретением, повышение выхода целевого продукта, упрощение процесса производства 1,1,1,3,3-пентафторпропана и расширение сырьевой базы.

Данная задача решается путем взаимодействия 1,1,1,3,3-пентахлорпропана с фтороводородом при температуре процесса 50-160oС и давлении 5-25 кгс/см2 в присутствии катализатора, состоящего из смеси пятихлористой сурьмы и фтороводорода в мольном соотношении SbCl5/HF от 1-70 до 1-1,8 и при нагрузке на катализатор 0,08-1 кг 1,1,1,3,3-пентахлорпропана/кг SbCl5 х час.

Техническая сущность изобретения заключается в проведении процесса получения 1,1,1,3,3-пентафторпропана фторированием 1,1,1,3,3-пентахлорпропана фтороводородом в присутствии каталиатора, представляющего собой смесь SbCl5 и HF при условиях, указанных выше.

Как показали анализы содержимого реактора, катализатор представляет собой соединения, имеющие брутто-формулу SbF3,2Cl1,8 SbF4,1Cl0,9, что достигается использованием избытка фтороводорода. Такой катализатор обладает высокой фторирующей активностью, что обеспечивает замещение всех 5 атомов хлора в молекуле 1,1,1,3,3-пентахлорпропана на фтор.

Показано, что более предпочтительным является подача 1,1,1,3,3-пентахлорпропана в смесь SbCl5 и HF, чем подача HF в смесь SbCl5 и 1,1,1,3,3-пентахлорпропана, так как в последнем случае имеет место разложение хлорорганического сырья с образованием смолы. Повышение давления способствует увеличению выхода целевого продукта за счет лучшей конденсации непрореагировавших промежуточных продуктов в обратном холодильнике и возврат их обратно в реактор.

Пример 1. Синтез 1,1,1,3,3-пентафторпропана проводили на установке, которая состояла из реактора вместимостью 40 л, обогреваемого паром, снабженного обратным холодильником с площадью теплообмена 0,025 м, охлаждаемого рассолом с температурой -20 -40oС. Газообразные продукты реакции поступали в обратный холодильник на дистилляцию; конденсирующиеся продукты стекали в реактор. Газы, выходящие из холодильника, поступали в сборник, охлаждаемый рассолом с температурой -40oС. Несконденсировавшиеся газы, содержащие в основном HCl, направлялись на водную адсорбцию. После окончания реакции содержимое реактора переконденсировалось в охлаждаемый сборник, после чего содержимое которого пропускалось через адсорбер, заполненный Al2O3, и затем продукт собирался и анализировался.

В реактор загружали 35 кг (0,12 кмоль) SbCl5 и 22,5 г (0,1 кмоль) 1,1,1,3,3-пентахлорпропана. Содержимое реактора разогревали до 80oС и затем по сифону подавали фтороводород со скоростью 5 кг/час всего подали 20 кг (1 кмоль). В реакторе поддерживали давление 10 кгс/см2. Выход продукта составлял 20% Органическая фаза, слитая из реактора, являлась смолообразным продуктотм, хромотографический анализ которого показал наличие более 20 веществ.

Пример 2. Использовалось то же оборудование, что и в примере 1, но в реактор загружали 35 кг (0,12 кмоль) SbCl5 и через сифон 20 кг (1 кмоль) HF. Давление поддерживали 10 кгс/см2. Содержимое разогревали до 80oС и затем по сифону подавали 1,1,1,3,3-пентахлорпропан со скорстью 5 кг/час всего подали 22,5 кг (0,1 кмоль). Выход целевого продукта составил 55% Смола в реакторе отсутствовала.

Примеры 3-7. Использовалось оборудвание и загрузка компонтов как и в примере 2, но опыты велись при ряде температур и давлении 20 кгс/см2. Результаты опытов показаны в табл.1.

Пример 8. Использовано оборудование как и в примере 2, но с целью увеличения выхода продукта над реактором устанавливалась насадочная колонна высотой 3 м и диаметром 200 мм, снабженная дефлегматором с площадью теплообмена 0,25 м2, охлаждаемым рассолом с температурой -20 - -40oС. Процесс велся с непрерывной подачей HF со скоростью 2,3 кг/час и 1,1,1,3,3-пентахлорпропана со скоростью 5 кг/час. Температура процесса составляла 120oC, давление 210 кг/см2. Выход продукта составил 95% Пример 9. То же, что и в примере 8, но 1.1.1.3.3-пентахлорпропан (ТХП) подавали со скоростью 10 кг/час, HF 4,6 кг/час. Выход составил 95% Примеры 10-14. То же, что и в примере 8, но опыты велись при температуре 100oС и давлении 20 кгс/см2 и при различных соотношениях SbCl5 и HF. Результаты представлены в табл.2.

Формула изобретения

Способ получения 1,1,1,3,3-пентафторпропана на основе полихлорпропана, отличающийся тем, что в качестве полихлорпропана используют 1,1,1,3,3-пентахлорпропан, который подвергают взаимодействию с фтороводородом в присутствии катализатора, состоящего из смеси пятихлористой сурьмы с фтороводородом при молярном соотношении SbCl5 HF 1:70 1,8, при нагрузке на катализатор 0,08 1,00 кг 1,1,1,3,3-пентахлорпропана/кг SbCl5ч при 50 160°С и 5 25 кгс/см2 с последующим выделением целевого продукта.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:
Изобретение относится к области синтеза реакционно способных фторорганических соединений, йодфторалканов, используемых в качестве полупродуктов при получении различных фторсодержащих веществ, например, эффективных фторированных ПАВ, а также применяющихся в оптических квантовых генераторах

Изобретение относится к области промышленного фторорганического синтеза, в частности к способу выделения дифторхлорметана и гексафторпропена из газов синтеза тетрафторэтилена

Изобретение относится к новым хлорфторуглеводородным азеотропным или азеотропоподобным смесям, которые могут быть использованы в качестве альтернативы хлорфторуглеродам, и обладают прекрасными свойствами в качестве растворителей и т.д
Изобретение относится к улучшенному способу получения 1,1,-дихлор-1-фторэтана взаимодействием фтористого водорода в паровой фазе с 1,1-дихлорэтиленом в присутствии катализатора, -фторида алюминия

Изобретение относится к органической химии, в частности к способу получения полифторалканов общей формулы R-R', где R и R' одинаковые или разные группы из числа CF3(CF2)n, где n=2-9, CClF2(CF2)n, где n=2-9, СНF2(CF2)n, где n=3-11, (CF3)2CF(CF2)3, CF3(CClF)2(CF2)4, которые могут быть использованы для синтеза высших моно- и дикарбоновых кислот, поверхностно-активных веществ на их основе, смазочных материалов, мономеров, растворителей, диэлектриков

Изобретение относится к химической технологии, а именно к производству 1,1,1-фтордихлорэтана (другие названия: хладон 141в; гидрохлорфторуглерод НСFC-141в), который используется как озонобезопасный компонент в составе теплоносителей, аэрозолей, порообразователей, растворителей, как ингаляционный анестетик, и в будущем, вероятно, сможет заменить хладон 11 в традиционных областях применения последнего

Изобретение относится к технологии получения фторэтанов фторированием олефиновых соединений трифторидом кобальта, а именно к получению 1,1,1,2-тетрафторэтана

Изобретение относится к способу получения дифторметана (хладона-32), являющегося озонобезопасным хладоном, используемым в качестве хладагента, пропелента и сырья для получения бромхладонов

Изобретение относится к способу получения дифторметана (хладона-32), являющегося озонобезопасным хладоном, используемым в качестве хладагента, пропелента и сырья для получения бромхладонов

Изобретение относится к способу получения фторированных алканов, в частности этанов и метанов путем контактирования галоидированных алканов с фтористым водородом в присутствии пентахлорида или пентабромида тантала
Изобретение относится к способам фторирования галоидированных углеводородов

Изобретение относится к способам получения химического вещества, конкретно к способам производства 1,1,1,2-тетрафторэтана, называемого обычно HFA 134а

Изобретение относится к химической технологии пергалогенбензолов, а именно к способу получения моно- и дибромперфторбензолов или их хлорсодержащих аналогов, которые применяются в качестве промежуточных продуктов в синтезе красителей, лекарственных препаратов, мономеров и т.д
Наверх