Осветитель спектрального прибора (варианты)

 

Использование: в спектральном приборостроении, в осветителях спектральных приборов, используемых совместно с монохроматорами и устройствами спектрофотометрирования. Сущность изобретения: в осветителе спектрального прибора, содержащем оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, проходящей через центр сферического зеркала и центр его кривизны, центр кривизны сферического зеркала расположен между сферическим зеркалом и излучателем при выполнении радиуса кривизны сферического зеркала в соотношении 0,8 от расстояния между сферическим зеркалом и излучателем или же центр кривизны сферического зеркала расположен между излучателем и объективом при выполнении радиуса кривизны сферического зеркала в соотношении 1,15 от расстояния между сферическим зеркалом и излучателем. 2 с.п. ф-лы, 2 ил.

Изобретение относится к области спектрального приборостроения, более конкретно к осветителям спектральных приборов, используемым совместно с монохроматором и устройством спектрофотометрирования непосредственно или через систему согласования с возможностью симметричного двухканального исполнения и коммутации каналов.

Известен осветитель спектрального прибора, содержащий оптически связанные объектив, излучатель и диафрагму при сопряжении излучателя через объектив с диафрагмой [1] Недостатком [1] является ограниченная энергетическая эффективность, определяемая полем диафрагмы и апертурой объектива, согласованными с монохроматором. Повышение энергетической эффективности за счет увеличения температуры излучателя ограничено предельным значением 1400oC, определяемым термоактивностью его поверхности в воздушной среде, кроме того, повышение температуры сопровождается возрастанием энергопотребления, а также уровня коротковолнового мешающего излучения, снижающего точность фотометрирования.

Известен осветитель спектрального прибора с повышенной энергетической эффективностью, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и диафрагму при установке оптической оси сферического зеркала, проходящей через центр объектива, по касательной к излучателю и совмещении точки касания с центром кривизны сферического зеркала [2] Недостатком [2] является повышение энергетической эффективности только при минимальном, определяемом размером излучателя разрешении, не реализуемое при среднем и максимальном разрешении.

Наиболее близким, принимаемым за прототип, является осветитель спектрального прибора, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную через объектив с излучателем диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала и совмещении центров излучателя и кривизны сферического зеркала [3] В осветителе [3] излучатель должен быть прозрачен для прохождения излучения, формируемого сферическим зеркалом, чем повышается его энергетическая эффективность за счет суммирования излучений, формируемых сферическим зеркалом и объективом.

Однако по закону Кирхгофа непоглощающий излучатель не возможен, и, следовательно, такой осветитель в чистом виде не работоспособен. Поэтому фактической областью его применения является использование излучателей с несплошным полем излучения с возможностью заполнения неизлучающих промежутков оптическим изображением излучающих, образуемым сферическим зеркалом, или частично поглощающего излучателя сплошного поля с коэффициентом поглощения К в диапазоне 0 <К <1.

Изобретение решает задачу повышения энергетической эффективности прототипа с излучателем сплошного поля с близким к 1 коэффициентом поглощения К при максимальном и среднем разрешении.

Это достигается благодаря тому, что согласно формуле изобретения в известном осветителе спектрального прибора, содержащем оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, центр кривизны сферического зеркала расположен между сферическим зеркалом и излучателем при выполнении радиуса кривизны сферического зеркала в соотношении 0,3 от расстояния между сферическим зеркалом и излучателем или центр кривизны сферического зеркала расположен между излучателем и объективом при выполнении радиуса кривизны сферического зеркала в соотношении 1,15 от расстояния между сферическим зеркалом и излучателем.

Оба варианта найденного технического решения обладают новизной, изобретательским уровнем и промышленной применимостью, а перечисленная совокупность их существенных признаков обеспечивает получение технического результата, выражаемого повышением энергетической эффективности осветителя при максимальном и среднем разрешении. Это достигается благодаря более полному, чем в прототипе, использованию излучения, формируемого излучателем, включающему не только его часть, идущую в пределах передней апертуры объектива, но и часть излучения, идущую в обратном направлении.

На фиг. 1 показана оптическая схема 1-го варианта осветителя; на фиг. 2 оптическая схема 2-го варианта.

Осветитель фиг. 1 в 1-м варианте исполнения содержит оптически связанные объектив 1, сферическое зеркало 2, расположенный между ними излучатель 3 и сопряженную с излучателем 3 через объектив 1 диафрагму 4 с определяемой используемым разрешением эффективной шириной dэф при установке центров 5 излучателя 3 и 6 объектива 1 на оптической оси 7 сферического зеркала 2, проходящей через его центр 8 и центр 9 кривизны. Центр 9 кривизны расположен между сферическим зеркалом 2 и излучателем 3 при выполнении радиуса R кривизны сферического зеркала 2 в соотношении 0,8 от расстояния S между сферическим зеркалом 2 и излучателем 3.

Осветитель функционирует следующим образом. При включении излучателя 3 излучение, формируемое лучами 10, 11, направляется в объектив 1, образующий лучами 12, 13 изображение 14 излучателя 3, совмещенное с диафрагмой 4. Одновременно излучение, формируемое лучами 15, 16, отражается от сферического зеркала 2, образующего лучами 17, 18 промежуточное изображение 19 излучателя 3, расположенное между сферическим зеркалом 2 и его центром 9 кривизны на расстоянии S от излучателя 3, затем идет в объектив 1, образующий лучами 20, 21 вторичное изображение 22 излучателя 3, расположенное между объективом 1 и диафрагмой 4 на расстоянии S от нее, связанном с S соотношением S = V2S, где V линейное увеличение объектива 1.

Поток излучения в обоих изображениях 14 и 22 суммируется на диафрагме 4, чем и определяется результирующее повышение энергетической эффективности.

Выбор соотношения R(S) определяется максимальным значением дополнительного потока излучения, образуемого сферическим зеркалом 2 и приплюсовываемого к основному потоку, идущему в объектив 1 и принимаемому за 1.

По формуле Аббе для сферического зеркала 2/R 1/S + 1/S', где S' расстояние от сферического зеркала 2 до промежуточного изображения 19, с учетом S = S - S имеем: где a = R/S.
Откуда, для конкретных :

Выбор , определяемый максимальной энергетической эффективностью, ограничивается виньетированием излучения, формируемого сферическим зеркалом 2 на излучателе 3 и диафрагме 4. Виньетирование излучателем 3 растет с уменьшением S, а диафрагмой 4 с увеличением S, пропорциональным S, т.е. оба виньетирования имеют противоположный характер зависимости от S, чем и определяется возможность оптимизации выбираемого значения .
Стандартные значения применяемых в осветителе параметров составляют: линейное увеличение V объектива 1,3x; входное относительное отверстие 1:4; выходное, соответствующее входному относительному отверстию монохроматора, 1: 5; диаметр А излучателя 4 мм. Оптимальное значение S сферического зеркала 2 составляет 100-150 мм и определяется: для Smin интенсивностью загрязнения сферического зеркала термическим испарением с открытой поверхности излучателя 3 (особенно при вакуумном исполнении осветителя); для Smax габаритами осветителя. Примем в качестве среднего оптимального значения Scp 120 мм, тогда для 1, 2, 3 получим:

Виньетирование излучателем 3, расположенным на расстоянии S от плоскости фокусировки излучения с относительным отверстием 1:4 составляет 4A/S, а пропускание П = 1 - (4A/S) для разных S:

Виньетирование излучения диафрагмой 4, расположенной на расстоянии S от вторичного изображения 22, не вызывает снижения энергетической эффективности при выполнении соотношения:

где A' ширина вторичного изображения 22, dэф эффективная ширина диафрагмы 4, соответствующая используемому разрешению, В выходное относительное отверстие объектива 1, допускаемое смещение плоскости фокусировки, т.е. при
Откуда, для A' 6 мм, В 1:5, максимального и среднего разрешения, соответствующих dэф 1 мм, имеем:
При выходе за пределы допускаемого смещения энергетическая эффективность снижается и определяется значением пропускания П(S):

Откуда для

Суммарное пропускание Пc, учитывающее оба виньетирования, составляет:

т. е. максимум энергетической эффективности соответствует установленному значению 2 = 0,8, а результирующее повышение энергетической эффективности предлагаемого осветителя в сравнении с прототипом составляет 25%
Осветитель фиг. 2 во 2-м варианте исполнения содержит оптически связанные объектив 1, сферическое зеркало 2, расположенный между ними излучатель 3 и сопряженную с излучателем 3 через объектив 1 диафрагму 4 с определяемой используемым разрешением эффективной шириной dэф при установке центров 5 излучателя 3 и 6 объектива на оптической оси 7 сферического зеркала 2, проходящей через его центр 8 и центр 9 кривизны. Центр 9 кривизны расположен между излучателем 3 и объективом 1 при выполнении радиуса R кривизны сферического зеркала в соотношении 1,15 от расстояния S между сферическим зеркалом 2 и излучателем 3.

Осветитель функционирует следующим образом. При включении излучателя 3 излучение, формируемое лучами 10, 11, направляется в объектив 1, образующий лучами 12, 13 изображение 14 излучателя 3, совмещенное с диафрагмой 4. Одновременно излучение, формируемое лучами 15, 16, отражается от сферического зеркала 2, образующего лучами 17, 18 промежуточное изображение 19 излучателя 3, расположенное между центром 9 кривизны сферического зеркала 2 и объективом 1 на расстоянии S от излучателя 3, затем идет в объектив 1, образующий лучами 20, 21 вторичное изображение 22 излучателя 3, расположенное за диафрагмой 4 на расстоянии S от нее, связанном с S соотношением S = V2S, где V линейное увеличение объектива 1.

Поток излучения в обоих изображениях 14 и 22 суммируется на диафрагме 4, чем и определяется результирующее повышение энергетической эффективности.

Выбор соотношения R(S) определяется максимальным значением дополнительного потока излучения, образуемого сферическим зеркалом 2 и приплюсовываемого к основному потоку, идущему в объектив 1 и принимаемому за 1.

По формуле Аббе для сферического зеркала
2/R 1/S + 1/S,
где S' расстояние от сферического зеркала 2 до промежуточного изображения 19, с учетом S = S+S имеем:

где a = R/S
Откуда для конкретных :

Дальнейшее рассмотрение, определяющее выбор 2 = 1,15 при максимальном повышении энергетической эффективности, полностью аналогично приведенному в варианте 1.

Реализуемый в предлагаемом осветителе энергетический выигрыш, составляющий 25% равносилен для наиболее энергетически критичной дальней ИК-области спектра (с длинами волн свыше 15 мкм, в области действия закона Релея-Джинса) такому же процентному увеличению температуры излучателя, т.е. с 1400oC до 1750oC, но достигаемому без фактического ее увеличения и возрастания энергопотребления, т.е. без форсирования рабочего режима эксплуатации и уменьшения его ресурса, а также без соответствующего этому повышению температуры роста уровня мешающего излучения, снижающего точность фотометрирования.

И, наоборот, при заданном уровне излучения предлагаемый осветитель обеспечивает возможность снижения рабочей температуры его излучателя с 1400oC до 1050oC, чем достигается как снижение уровня энергопотребления и соответствующее увеличение ресурса эксплуатации, так и уменьшение уровня мешающего излучения и соответствующее этому повышение точности фотометрирования в спектральном приборе, совместно с которым осветитель используется.

Источники информации, использованные при подготовке описания
1. Спектрометр инфракрасный ИКС-12. Инструкция к пользованию. ЛОМО, 1966, с. 5-6.

2. Авторское свидетельство СССР N 1571418, кл. G 01 J 3/02.

3. Зайдель А.Н. Островская Г.В. Островский Ю.И. Техника и практика спектроскопии. М. Наука, 1976, с. 132, прототип.


Формула изобретения

1. Осветитель спектрального прибора, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, отличающийся тем, что центр кривизны сферического зеркала расположен между сферическим зеркалом и излучателем при выполнении радиуса кривизны сферического зеркала в соотношении 0,8 от расстояния между сферическим зеркалом и излучателем.

2. Осветитель спектрального прибора, содержащий оптически связанные объектив, сферическое зеркало, расположенный между ними излучатель и сопряженную с излучателем через объектив диафрагму при установке центров излучателя и объектива на оптической оси сферического зеркала, отличающийся тем, что центр кривизны сферического зеркала расположен между излучателем и объективом при выполнении радиуса кривизны сферического зеркала в соотношении 1,15 от расстояния между сферическим зеркалом и излучателем.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к спектральным источникам света, предназначенным для работы в атомно-абсорбционных и атомно-флуоресцентных спектрофотометрах

Изобретение относится к технической физике, более конкретно к монохроматизации оптического излучения, точнее - к монохроматизации излучения газоразрядных ламп в вакуумной ультрафиолетовой (ВУФ) области спектра

Изобретение относится к спектральному анализу

Изобретение относится к электрическим разрядам, используемым для испарения вещества и возбуждения спектров при эмиссионном спектральном анализе

Изобретение относится к эмиссионному спектральному анализу и может быть применено при количественном спектральном анализе химического состава вещества

Изобретение относится к импульсным широкополосным источникам некогерентного оптического излучения высокой пиковой мощности и может быть использовано для проведения научно-исследовательских работ, в микроэлектронике, в медицине и других областях

Изобретение относится к спектральному анализу, в частности к распылителям порошковых проб, направляемых в источник возбуждения спектра и может быть использовано для спектрального анализа проб ограниченной навески, например, при озолении биологических объектов или в минералогии

Изобретение относится к области микроэлектронных и микромеханических устройств и может быть использовано в качестве нагревателя интегрального полупроводникового газового датчика, инфракрасного излучателя адсорбционного оптического газоанализатора, активатора печатающей головки струйного принтера

Изобретение относится к спектральному анализу и может быть использовано для проведения анализа электропроводных материалов без предварительной механической пробоподготовки

Изобретение относится к калибровке светодиодов и их использованию, в частности, в неинвазивных оксигемометрах

Изобретение относится к области спектрального приборостроения

Изобретение относится к измерительной технике

Изобретение относится к устройствам, применяемым в спектрофотометрии в качестве излучателя на область спектра от 202 нм до 3500 нм, позволяющим получить интенсивный спектр излучения после монохроматора спектрофотометра
Наверх