Статический компенсатор реактивной мощности

 

Изобретение относится к энергетике и предназначено для регулирования реактивной мощности в сетях энергосистем и может быть использовано для повышения коэффициента мощности электрических машин и статических преобразователей в промышленных установках. Статический компенсатор реактивной мощности содержит трехфазный трансформатор с двумя системами первичных обмоток и одной системой вторичных, соединенных в звезду обмоток и реактивные сопротивления. Концы одной из систем первичных обмоток соединены в звезду, нейтраль которой соединена с нейтралью вторичных обмоток и нейтралью сети. К началам первичных обмоток, соединенных в звезду, подключены концы второй системы первичных обмоток. Обмотки, начало и конец которых соединены вместе, находятся на соседних стержнях магнитопровода. При этом начала обмоток второй системы подсоединены к соответствующим фазам сети и через реактивные сопротивления к синфазным концам вторичных обмоток. Вторичные обмотки выполнены регулируемыми. 2 ил.

Изобретение относится к энергетике и предназначено для регулирования реактивной мощности в сетях энергосистем и может быть использовано для повышения коэффициента мощности электрических машин и статических преобразователей в промышленных установках, снижения колебаний и регулирования напряжения в системах электроснабжения дуговых печей.

Известен статический компенсатор реактивной мощности, содержащий трехфазный трансформатор и реактивные сопротивления в виде реакторов (Статические компенсаторы для регулирования реактивной мощности/Под ред. Р. М. Матура. М. Энергоатомиздат, 1987, с. 22 26).

Наиболее близким к предлагаемому по технической сущности является статический компенсатор реактивной мощности, содержащий трехфазный трансформатор и реакторы (Джюджи Л. Пелли Б. Силовые полупроводниковые преобразователи частоты. М. Энергоатомиздат, 1983, с. 369 378).

Недостатком данного устройства является большой уровень потерь электроэнергии в сети. Это обусловлено тем, что при регулировании реактивной мощности для изменения напряжения на реакторах используются вентильные преобразователи частоты, которыми в сеть генерируются высшие гармоники.

Гармонические составляющие тока и напряжения в линиях электропередачи вызывают дополнительные потери в шунтовых конденсаторах и вращающихся машинах, сопротивления которых на частотах высших гармоник существенно ниже, чем на частоте основной гармоники. Если даже не достигаются пределы безопасной работы оборудования, то потери, связанные с гармониками, могут приводить к его перегревам. Кроме того, гармонические токи в силовых цепях наводят возмущающие гармонические напряжения в системах телекоммуникаций, релейной защиты и телемеханики через связи взаимной индукции между цепями: одна между металлическими контурами, другая между контурами заземления.

Задача изобретения снижение уровня высокочастотных составляющих напряжения и тока статического компенсатора реактивной мощности, что позволяет значительно снизить потери электроэнергии в потребителе.

Существенными признаками, характеризующими предлагаемое решение, являются наличие трехфазного трансформатора с двумя системами первичных обмоток и одной системой вторичных, соединенных в звезду, обмоток и реактивных сопротивлений.

В отличие от прототипа концы одной из систем первичных обмоток соединены в звезду, нейтраль которой соединена с нейтралью вторичных обмоток и нейтралью сети. К началам первичных обмоток, соединенных в звезду, подключены концы второй системы первичных обмоток, обмотки, начало и конец которых соединены вместе, находятся на соседних стержнях магнитопровода. При этом начала обмоток второй системы подсоединены к соответствующим фазам сети и через реактивные сопротивления к синфазным концам вторичных обмоток. Вторичные обмотки выполнены регулируемыми.

Изобретение повышает качество электроэнергии и, кроме того, позволяет улучшить массогабаритные характеристики статического компенсатора, вследствие чего снижается его удельная стоимость.

На фиг. 1 приведена схема статического компенсатора реактивной мощности; на фиг. 2 векторные диаграммы напряжений и токов, поясняющие принцип работы статического компенсатора.

Статический компенсатор реактивной мощности (фиг. 1) содержит трехфазный трансформатор с двумя системами первичных 1.1, 1,2, 1.3 и 2.1, 2.2, 2.3 обмоток и одной системой вторичных, с регулируемым числом витков 3.1, 3.2, 3.3 обмоток и реактивные сопротивления 4, 5, 6. Обмотки 3.1, 3.2, 3.3 соединены своими началами в звезду. Концы обмоток 1.1, 1.2, 1.3 соединены в звезду, нейтраль которой соединена с нейтралью обмоток 3.1, 3.2, 3.3 и нейтралью сети. К началам обмоток 1.1, 1.2, 1.3 подключены соответственно концы обмоток 2.3, 2.1, 2.2. Начала обмоток 2.1, 2.2, 2.3 подключены к фазам С, А, В сети.

Обмотки трехфазного трансформатора разбиты на три группы: 1.1, 2.1, 3.1 первая; 1.2, 2.2, 3.2 вторая; 1.3, 2.3, 3.3 третья.

Каждая из трех групп обмоток имеет самостоятельный общий для обмоток данной группы магнитопровод, что при указанном соединении обмоток всех групп, обеспечивает синтез каждой фазы системы выходных напряжений путем геометрического суммирования векторов напряжений, соответствующих фаз первичных обмоток. При этом на вторичных обмотках получается система напряжений, сдвинутая относительно питающих на 120o. Между системами первичных, и вторичных напряжений, находящихся в фазе, включены реактивные сопротивления 4 6. Реактивные сопротивления могут быть выполнены в виде реакторов или конденсаторов.

Статический компенсатор реактивной мощности работает следующим образом.

Напряжение питающей сети подается на клеммы А, В, С и нейтраль N первичных обмоток трансформатора, а также на соответствующие концы реактивных сопротивлений, одна система первичных обмоток трансформатора соединена в звезду, к вершинам которой подключены соответствующие фазы первичных обмоток другой системы. Системы первичных обмоток выполнены с одинаковым числом витков. При этом каждая фаза системы выходных напряжений, получаемых в системе вторичных обмоток, соединенных в звезду, синтезируется геометрическим суммированием напряжений соответствующих фаз первичных обмоток. Это обеспечивает сдвиг фаз выходного напряжения относительно питающего на 120o. Вершины звезды системы вторичных обмоток подключаются к реактивным сопротивлениям таким образом, что последние оказываются подключенными между двумя напряжениями, питающим и выходным, находящимися в фазе. Управление величиной реактивной мощности осуществляется за счет изменения амплитуды выходного напряжения, посредством регулирования количества витков во вторичных обмотках.

Возможные режимы работы статического компенсатора для случая, когда реактивное сопротивление носит индуктивный характер, иллюстрируются векторными диаграммами, показанными на фиг. 2. Здесь возможны следующие три режима: а) , где и значения напряжений на первичной и вторичной соответственно обмотках трансформатора, в этом режиме реактивная мощность равна нулю; б) , при этом реактивная мощность имеет отрицательную величину, т. е. компенсатор ведет себя как емкостной элемент, потребляя из сети емкостную составляющую тока или емкостную реактивную мощность, и поскольку напряжение питающей сети больше по амплитуде, чем напряжение вторичных обмоток , то под действием разницы напряжений через реактивные сопротивления потечет уравнительный ток , отстающий по фазе от , так как реактивное сопротивление носит индуктивный характер, на угол /2/2 или опережающий напряжение питающей сети на этот же угол; в) , в этом случае значение реактивной мощности положительное и это означает, что статический компенсатор ведет себя как индуктивный элемент; последнее объясняется тем, что здесь вектор уравнительного тока , по отношению к напряжению питающей сети, имеет реактивную индуктивную составляющую.

Статический компенсатор работает аналогичным образом и в случае, когда реактивное сопротивление носит емкостной характер. Отличие будет заключаться в том, что здесь уравнительный ток будет опережать напряжение на угол /2/2.

Формула изобретения

Статический компенсатор реактивной мощности, содержащий трансформатор с двумя системами первичных обмоток и одной системой вторичных соединенных в звезду обмоток и реактивные сопротивления, отличающийся тем, что концы одной из систем первичных обмоток соединены в звезду, нейтраль которой соединена с нейтралью вторичных обмоток и нейтралью сети, а к началам первичных обмоток, соединенных в звезду, подключены концы второй системы первичных обмоток, причем обмотки, начало и конец которых соединены вместе, находятся на соседних стержнях магнитопровода, при этом начала обмоток второй системы подсоединены к соответствующим фазам сети и через реактивные сопротивления к синфазным концам вторичных регулируемых обмоток.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к электротехнике, в частности к устройствам компенсации реактивной мощности, и может быть использовано при создании энергоблоков промышленных и сельскохозяйственных объектов с высокой эффективностью использования и потребления электроэнергии и стабильным напряжением

Изобретение относится к электромашиностроению и может быть использовано в асинхронных электроприводах различных механизмов

Изобретение относится к электротехнике, а именно к промышленной электроэнергетике

Изобретение относится к электротехнике и может быть использовано в устройствах для регулирования емкостного тока, например в установках для повышения коэффициента мощности потребителей или в регуляторах напряжения асинхронных генераторов с емкостным возбуждением

Изобретение относится к электротехнике, в частности к энергетической электронике, и может быть использовано для компенсации реактивной мощности и стабилизации напряжения трехфазной сети

Изобретение относится к электротехнике, в частности к устройствам компенсации неактивных составляющих мощности, и может быть использовано в системах энергоснабжения электротехнических и энергетических цепей с искажающими ток и напряжение нагрузками для повышения эффективности передачи и потребления электроэнергии

Изобретение относится к электротехнике и может быть использовано для регулирования напряжения под нагрузкой, а также компенсации реактивной мощности или симметрирования нагрузки в трехфазной сети

Изобретение относится к области электротехники и предназначено для использования в промышленных электрических сетях предприятий для компенсации реактивной мощности нагрузки и снижения мощности, потребляемой из сети

Изобретение относится к способу регулирования четырехквадрантного установочного органа, выполняющего роль преобразователя тока сети, который со стороны выхода питает через промежуточный контур постоянного напряжения и импульсный инвертор электроприводы трехфазного тока и со стороны входа подключен к сети переменного напряжения предпочтительно через многообмоточный трансформатор с вторичными обмотками для четырехквадрантного установочного органа и дополнительных потребителей, например для преобразователей вспомогательных служб, и набор фильтров помех для применения, в частности, на питаемых от контактной сети электровозах трехфазного тока

Изобретение относится к электротехнике, в частности к компенсации неактивных составляющих мощности, и может быть использовано в системах энергоснабжения электротехнических и энергетических цепей с искажающими ток и напряжение нагрузками для повышения эффективности передачи и потребления электроэнергии

Изобретение относится к энергетической электронике, в частности к устройствам повышения качества и эффективности использования электроэнергии, и может быть использовано в системах электроснабжения промышленных предприятий

Изобретение относится к энергетической электронике и может быть использовано в компенсаторах реактивной мощности для улучшения качества выходного напряжения
Наверх