Использование: в химии высокомолекулярных соединений. Сущность изобретения: композиция, содержащая полистирол или его сополимеры, или полиуретан, или полиацеталь, или бутадиен-акрилонитрильный каучук, или полиэфирполиол и 0,05 - 3,0 мас.% алкилзамещенного фенола общей формулы:
где R1 = CH3, C2H5; R2 = C8H17 - C30H61 и способ стабилизации путем смешения компонентов. 2 с.п.ф-лы, 11 табл.
Изобретение относится к химии полимеров, конкретно к стабилизированным композициям, содержащим органические полимеры, например акрилонитрилбутадиенстирольный сополимер и 2,4-диметил-6-алкилфенолы, также к способу их получения.
Известны стабилизированные стиролсодержащие композиции, полученные путем смешения (со)полимера стирола с 0,005 5 мас.ч. стабилизатора, в том числе и разветвленных фенолов.
Это техническое решение является наиболее близким к предлагаемому.
Целью предлагаемого технического решения является повышение термической, окислительной и светостабилизации полимерной композиции составом, содержащим полистирол, сополимеры стирола, полиуретан, полиацеталь, полиэфирполиол или бутадиен-акрилонитрильный каучук и алкилзамещенный фенол общей формулы I

(I), в которой R
1 означает метил или этил, а R
2 представляет собой C
8 C
30-алкил.
Предпочтительное значение R
2 C
8 C
18-алкил или C
10 C
30-алкил. R
2 как C
12 C
18-алкил является особенно предпочтительным.
Представляют интерес составы, содержащие соединение формулы I:

или

Также представляют интерес составы, содержащие смесь следующих соединений:

и

где

означает -C
mH
2m+1, а

-C
m-1H
2m-1, а "m" представляет собой целое число 8 30.
Весовое соотношение соединений (Ia) к (Ib) составляет 1/99 99/1, предпочтительно 99/1 70/30, в частности 95/5 80/20.
Предпочтительны также композиции, где полимером является полистирол, со- или терполимер полистирола. В качестве примеров следует назвать:
1) полистирол;
2) сополимеры стирола с диенами или производными акрила, как например стирол-бутадиен, стирол-акрилонитрил, стирол-алкилметакрилат, стирол-бутадиен-алкилакрилат, стирол-ангидрид малеиновой кислоты, стирол-акрилонитрил-метакрилат; смеси высокой ударной вязкости из сополимеров стирола, полимера диена или этилен-пропилен-диентерполимеров; а также блок-сополимеры стирола, как например стирол-бутадиен-стирол, стирол-изопрен-стирол, стирол-этиленбутилен-стирол или стирол-этилен-пропилен-стирол.
3) Привитые сополимеры стирола или, как например стирол на полибутадиене, стирол на полибутадиенстироле или полибутадиен-акрилонитрил-сополимерах, стирол и акрилонитрил (или метакрилонитрил) на полибутадиене; стирол, акрилонитрил и метилметакрилат на полибутадиене; стирол и ангидрид малеиновой кислоты на полибутадиене; стирол, акрилонитрил и ангидрид уксусной кислоты или имид малеиновой кислоты на полибутадиене; стирол и имид уксусной кислоты на полибутадиене; стирол и алкилакрилаты или алкилметакрилаты на полибутадиене; стирол и акрилонитрил на этилен-пропилен-диен-терполимерах; стирол и акрилонитрил на полиалкилакрилатах или полиалкилметакрилатах; стирол и акрилонитрил на акрилат-бутадиен-сополимерах, а также из смеси с сополимерами, названными в пункте (2).
Особенно предпочтительными в качестве полимеров являются обладающий ударной вязкостью полистирол (IPS), стирол-акрилонитрильный сополимер (SAN) и акрилонитрил-бутадиен-стирол-сополимеры (ABS), в частности акрилонитрил-бутадиен-стирольные сополимеры (ABS).
Определенный интерес как полимер представляет также полиуретан, полиацеталь. Как примеры следует назвать:
1) полиуретаны, которые получают из полиэфиров, простых полиэфиров и полибутадиенов с гидроксильными группами в конечном положении с одной стороны, и алифатическими и ароматическими полиизоцианатами с другой стороны, а также их полупродукты.
2) Полиацетали как полиоксиметилен, а также полиоксиметилены, содержащие, например оксид этилена; полиацетали, модифицированные термопластическими полиуретанами, акрилатами.
Наряду с соединением формулы I предложенные составы могут содержать дополнительно обычные присадки, как например:
1.Антиокислители.
1.1. Алкилированные монофенолы, например 2,6-ди-трет.бутил-4-метилфенол, 2-трет. бутил-4,6-диметилфенол, 2,6-ди-трет. бутил-этилфенол, 2,6-трет.бутил-4-n-бутилфенол, 2,6-ди-трет. бутил-4-бутилфенол, 2,6-циклопентил-4-метилфенол, 2-(

-метил-циклогексил)-4,6-диметилфенол, 2,6-диоктадецил-4-метилфенол, 2,4,6-трициклогексилфенол, 2,6-ди-трет.бутил-4-метоксиметилфенол, 2,6-динонил-4-метилфенол.
1.2.Алкилированные гидрохиноны, например 2,6-ди-трет.бутил-4-метоксифенол, 2,5-ди-трет. бутил-гидрохинон, 2,5-ди-трет.амил-гидрохинон, 2,6-ди-фенил-4-октадецилоксифенол.
1.3. Гидроксилированные тиодифениловый эфир, например 2,2'-тио-бис-(6-трет.бутил-4-метилфенол), 2,2'-тио-бис-(4-октилфенол), 4,4'-тио-бис-(6-трет. бутил-3-метилфенол), 4,4'-тио-бис-(трет.бутил-2-метилфенол).
1.4. Алкилен-бис-фенолы, например 2,2'-метилен-бис-(6-трет.бутил-4-метилфенол), 2,2'-метилен-бис-(6-трет. бутил-4-этилфенол), 2,2'-метилен-бис-(4-метил-6)-метилциклогексил)-фенол, 2,2'-метилен-бис-(4-метил-6-циклогексилфенол), 2,2'-метилен-бис-(6-нонил-4-метилфенол), 2,2'-метилен-бис-(4,6-ди-трет.бутилфенол), 2,2'-этилиден-бис-(4,6-ди-трет.бутилфенол), 2,2'-этилиден-бис-(6-трет. бутил-4-изобутилфенол), 2,2'-метилен-бис-(6-метилбензил)-4-нонилфенол, 2,2'-метилен-бис-(6-a,

-диметилбензил)-4-нонилфенол), 4,4'-метилен-бис-(2,6-ди-трет. бутилфенол), 4,4'-метилен-бис-(6-трет.бутил-2-метилфенол), 1,1-бис-(5-трет. бутил-4-гидрокси-2-метилфенол)бутан, 2,6-бис-(3-трет. бутил-5-метил-2-гидроксибензил-4-метилфенол, 1,1,3-трис-(5-трет. бутил-4-гидрокси-2-метил-фенил)бутен, 1,1-бис-(5-трет.бутил-4-гидрокси-2-метил-фенил)-3-n- додецилмеркаптобутан, этиленгликоль-бис-(3,3-бис-3'-трет. бутил-4'-гидроксифенил-(-бутират), бис-(3-трет.бутил-4-гидрокси-5-метилфенил)дициклопентадиен, бис-(2,-3'-трет.бутил-2'-гидрокси-5'-метил-бензил)-6-трет.бутил-4- метил-фенил)тетрафталат.
1.5. Бензильные соединения, например 1,3,5-трис-(3,5-ди-трет.бутил-4-гидроксибензил)-2,4,6-триметилбензол, бис-(3,5-ди-трет.бутил-4-гидроксибензил)сульфид, 3,5-ди-трет.бутил-4-гидроксибензил-изооктиловый эфир меркаптоуксусной кислоты, бис-(4-трет. бутил-3-гидрокси-2,6-диметилбензил)дитиол-терефталат, 1,3,5-трис-(3,5-ди-трет. бутил-4-гидроксибензил)изоцианурат, 1,3,5-трис-(4-трет. бутил-3-гидрокси-2,6-диметилензил)изоцианурат, 3,5-ди-трет. бутил-4-гидроксибензил-фосфоновая кислота диоктадециловый эфир, кальциевая соль 3,5-ди-трет.бутил-4-гидроксибензил-моноэтилэфир фосфоновой кислоты, 1,3,5-трис-(3,5-дициклогексил-4-гидроксибензил)изоцианурат.
1.6. Ациламинфенолы, например 4-гидрокси-анилид лауриновой кислоты, 4-гидрокси-анилид стеариновой кислоты, 2,4-бис-(октилмеркапто)-6-(3,5-ди-трет. бутил-4-гидроксианилино)-N- триазин, 11-(3,5-ди-трет. бутил-4-гидроксифенил)октиловый сложный эфир карбаминовой кислоты.
1.7. Сложный эфир -(3,5-ди-трет.бутил-4-гидроксифенил)пропионовой кислоты с одноатомным спиртом или многоатомными спиртами, как например с метанолом, октадеканолом, 1,6-гександиолом, неопентилгликолем, тиодиэтиленгликолем, диэтиленгликолем, триэтиленгликолем, пентаэритритом, трис-(гидроксиэтил)-изоциануратом, диамидом, N,N'-бис-(гидроксиэтил)щавелевой кислоты.
1.8. Сложный эфир (5-трет. бутил-4-гидрокси-S-метилфенил)пропионовой кислоты с одноатомным или многоатомным спиртами, как например с метанолом, октадеканолом, 1,6-гександиолом, неопентилгликолем, тиодиэтиленгликолем, диэтиленгликолем, триэтиленгликолем, пентаэритритом, трис-гидрокси(этилизоциануратом, диамидом N,N'-бис-(гидроксиэтил)щавелевой кислоты.
1.9. Сложный эфир (3,5-дициклогексил-4-гидроксифенил)пропионовой кислоты с одноатомными или многоатомными спиртами, как например с метанолом, октадеканолом, 1,6-гександиолом, неопентил-гликолем, тиодиэтиленгликолем, диэтиленгликолем, триэтиленгликолем, пентаэритритом, трис-(гидрокси)этилизоциануратом, диамидом N, N'-бис-(гидроксиэтил) щавелевой кислоты.
1.10. Амиды b-(3,5-ди-трет. бутил-4-гидроксифенил)пропионовой кислоты, как например N,N'-бис-(3,5-ди-трет.бутил-4-гидроксифенил пропионил)гексаметилендиамин, N, N'-бис(3,5-ди-трет.бутил-4-гидроксифенилпропионил)триметилендиамин, N, N'-бис-(3,5-ди-трет. бутил-4-гидроксифенилпропионил)гидразин.
2.UV-абсорбер и светозащитное средство.
2.1. 2-(2'-гидроксифенил)бензтриазолы, как например 5-метил, 3',5'-ди-трет.бутил, 5'-трет.бутил, 5'-(1,1,3,3-тетраметилбутил, 5-хлор-3,5'-ди-трет. бутил, 5-хлор-3'-трет. бутил-5'-метил, 3'-втор.бутил-5, трет.бутила, 4'-октокси, 3',5'-ди-трет.амил, 3',5'-бис(a,

-диметилбензилпроизводные).
2.2.2. Гидроксибензофеноны, как например 4-гидроксипроизводное, 4-метоксипроизводное, производное 4-октокси, 5,4-додецилокси, 4-бензилокси, 4,2',4'-тригидрокси, 2'-гидрокси-4,4'-диметоксипроизводное.
2.3. Сложный эфир замещенных бензойных кислот, как например 4-трет.бутил-фенилсалицилат, фенилсалицилат, октилфенилсалицилат, дибензолресорсин, бис-(4-трет. бутилбензоил)ресорсин, бензоилресорсин, 3,5-ди-трет.бутил-4-гидроксибензойная кислота, -2,4-ди-трет.бутил-фениловый эфир, 3,5-ди.трет-бутил-4-гексадециловый эфир гидроксибензойной кислоты.
2.4. Акрилаты, как например этиловый эфир a-циан-b,

-дефенилакриловой кислоты или изооктиловый эфир вышеназванного соединения, метиловый эфир a-карбокси-метокси-коричной кислоты, метиловый эфир a-циано-b-метил-p-метоксикоричной кислоты или бутиловый эфир вышеуказанного соединения, метиловый эфир a-карбометокси-p-метокси-коричной кислоты, N-(b-карбометокси-b-циановинил)-2-метил-индолин.
2.5. Никелевые соединения, как например никелевые комплексы 2,2'-ти-бис-(4-(1,1,3,3-тетраметилбутил)-фенола), как 1 1- или 1 2-комплекс, при необходимости с дополнительными лигандами, как н-бутиламин, триэтаноламин или N-циклогексил-диэтаноламин, никельдибутилдитиокарбамат, никелевые соли-4-гидрокси-3,5-ди.трет.бутиленбензилфосфорной кислоты - моноалиловые эфиры как от метилового или этилового эфира, никелевые комплексы кетоксимов как 2-гидрокси-4-метил-фенил-ундецилкетоксим, никелевые комплексы 1-фенил-4-лауроил-5-гидрокси-паразола при необходимости с дополнительными лигандами.
2.6. Стерически затрудненные амины, как например бис-(2,2,6,6-тетраметилпиперидил)себацат, бис-(1,2,2,6,6-пентаметилпиперидил)себацат, сложный эфир H. -бутил-3,5-ди-трет. бутил-4-гидрокси-бензилмалоновой кислоты -бис-(1,2,2,6,6-пентаметилпиперидил), продукт конденсации из 1-гидроксиэтил-2,2,6,6-тетраметил-4-гидроксипиперидина и янтарной кислоты, продукт конденсации из N,N'-бис-(2,2,6,6-тетраметил-4-пиперидил)гексаметилендиамина и 4-трет. октиламино-2,6-дихлор-1,3,5-триазина, трис-(2,2,6,6-тетраметил-4-пиперидил)нитрилотриацетата, тетракси-(2,2,6,6-тетраметил-4-пиперидил)-1,2,3,4-бутантетраоата, 1,1'-(1,2-этандиил)-бис-(3,3,5,5)-тетраметил-пиперазинон).
2.7. Диамиды щавелевой кислоты, как например 4,4'-диоктилокси-оксанилид, 2,2'-диоктилокси-5,5'-ди-трет. бутил-оксанилид, 2,2'-дидодецилокси-5,5'-ди-трет.бутил-оксанилид, 2-этокси-2'-этилоксанилид, N,N'-бис-(3-диметиламинопропил)оксаламид, 2-этокси-5-трет. бутил-2'-этилоксанилид и его смесь с 2-этокси-2'-этил-5,4'-ди-трет.бутил-оксанилид, смеси o и p-метокси, а также o и p-этокси-дизамещенных оксанилидов.
2.8. 2-(2-гидроксифенил)-1,3,5-триазины, как например 2,4,6-трис-(2-гидрокси-4-октилоксифенил)-1,3,5-триазин, 2-(2-гидрокси-4-октилоксифенил)-4,6-бис-(2,4-диметилфенил)-1,3,5- триазин, 2,4-бис-(2-гидрокси-4-пропилоксифенил)-6-(2,4-диметилфенил)-1,3,5- триазин, 2-(2-гидрокси-октилоксифенил)-4,6-бис-(4-метилфенил)-1,3,5-триазин, 2-(2-гидрокси-4-додециклофенил)-4,6-бис-(2,4-диметилфенил)-1,3,5- триазин.
3. Металлические дезактиваторы, как например N,N'-диамид-дифенилщавелевой кислоты, N-салицилал-N'-салицилоилгидразин, N,N'-бис-(салицилоил)гидразин, N, N'-бис-(3,5-ди-трет. бутил-4-гидроксифенилпропионил)гидразин, 3-салицилоиламино-1,2,4-триазол, бис-(бензилиден)гидразид щавелевой кислоты.
4. Фосфиты и фосфониты, как например трифенилфосфит, дифенилалкилфосфиты, фенилдиалкилфосфиты, трис-(нонилфенил)фосфит, трилаурилфосфит, триоктадецилфосфит, дистеарил-пентаэритрит-дифосфит, трис-(2,4-ди-трет.бутилфенил)фосфит, диизодецилпентаэритрит-дифосфит, бис-(2,4-ди. трет. бутилфенил)пентаэритритдифосфит, тристеарил-сорбит-трифосфит, тетракис(2,4-ди-трет. бутилфенил)-4,4'-бифенилен-дифосфонит, 3,9-бис-(2,4-ди-трет.бутилфенокси)-2,4,8,10-тетраокса-3,9- дифосфаспиро(5,5)ундекан.
5.Соединения, разрушающие перекись, как например эфир b-тиодиопропионовой кислоты, например лауриловые, стеариловые, миристиловые или тридециловые сложные эфиры, меркаптобензимидазол, цинковая соль 2-меркаптобензимидазола, цинк-дибутил-дитиокарбамат, диоктадецилдисульфид, пентаэритриттетракис-(b-додецилмеркапто)пропинат.
6. Полиамидные стабилизаторы, как например медные соли в сочетании с йодидами и/или фосфорными соединениями и соли двухвалентного марганца.
7. Основные со-стабилизаторы, как например меламин, поливинилпирролидон, дициандиамид, триаллилцианурат, производное карбамида, производное гидразина, амины, полиамиды, полиуретаны, щелочные и щелочноземельные соли высших жирных кислот, например Ca-стеарат, Zn-стеарат, Mg-стеарат, Na-рицинолеат, К-пальмитат, пирокатехинат сурьмы, пирокатехинат олова.
8. Добавка для получения мелкоячеистого пенопласта, как например 4-трет. бутилбензойная кислота, адипиновая кислота, дифенил-уксусная кислота.
9. Наполнители и усилители, как например карбонат кальция силикаты, стекловолокно, асбест, тальк, каолин, слюда, сульфат бария, оксиды металлов и гидроксиды металлов, сажа, графит.
10. Прочие добавки, как например пластификаторы, смазки, эмульгаторы, пигменты, оптические осветлители, противовоспламеняющие средства, антистатики, парообразователь.
Соединения формулы I можно вводить в виде метрического раствора, который содержит эти соединения в концентрации 2,5 25 мас. либо добавлять к стабилизируемым материалам.
Соединения формулы I могут быть добавлены перед полимеризацией или во время нее, или перед сшиванием.
Соединения формулы I можно добавлять в чистом виде или в восках, маслах или полимерах.
Стабилизированные композиции можно применять в разнообразной форме, например как пленки, волокна, ленточки пленочная лента, формовочная масса, профили или в качестве связующего вещества для лаков, клея или замазки.
Соединения формулы I могут быть получены по аналогии с известными способами, например посредством каталитического алкилирования 2,4-ксиленола с альфа-олефинами.

R означает алкил.
В качестве соединений формулы III можно использовать также

-олефиновые смеси, где R например означает C
13 C
17-алкил, С
17 C
21-алкил или C
21 C
27-алкил.
Взаимодействие целесообразно осуществлять при температурах 80 - 250
oС, предпочтительно 130 200
oC, в присутствии катализатора. В качестве пригодных катализаторов следует назвать:
а) неорганические и органические кислоты, как например серная кислота или о-толуолсульфоновая кислота;
b) цеолиты;
с) кислые земли;
d) катализаторы Фриделля-Крафтса;
e) активную g-окись алюминия.
В качестве катализатора особенно предпочтительным является g-окись алюминия.
Если при получении соединения формулы I образуется смесь из соединений (Ia) и (Ib), то ее можно отделить, например с помощью хроматографического способа, в частности газовой хроматографии.
Вторым объектом изобретения является способ стабилизации полистирола или его сополимеров, полиуретана, бутадиен-акрилонитрильного каучука, полиацеталей или полиэфирполиола против термического, окислительного или актинического разложения путем смешения полимера и 0,05 3,0% от массы полимера алкилзамещенного фенола.
Следующими примерами иллюстрируется изобретение более подробно. Данные частей и процентов являются весовыми.
Пример 1. Получение 2,4-диметил-5-втор.октадецилфенола. В автоклав (2000 мл) заполняют 765 г a-октадецена (чистота: 85%), 366,5 г 2,4-ксиленола и 30 г активной окиси алюминия в качестве катализатора. Эту реакционную смесь нагревают до 310
oC и в течение 15 ч перемешивают при этой температуре. Сырой продукт дистиллируют при 200 225
oC и 1 кРа. Полученный продукт - бесцветный воск и представляет смесь 2,4-диметил-6-(1-метилгептадецил)фенола и 2,4-диметил-6-(2-этилгексадецил)фенола в соотношении 74/11.
Смесь изомеров можно разделить с помощью хроматографических методов (например газовой хроматографии или жидкостной хроматографии высокого давления).
Выход: 770 г (

от теоретической величины).
Температура плавления:

30
oC
Элементный анализ: рассчитано C 83,35% H 12,38%
найдено- C 83,49% H 12,32%
Пример 2а: Получение 2,4-диметил-6-втор.гексадецилфенола. Способ осуществляют по примеру 1. Используют как реагенты 672 г

-гексадецена (чистота: 92% ) и 366,5 г 2,4-ксиленола. Полученный продукт это бесцветная жидкость в виде смеси 2,4-диметил-6-(1-метилпентадецил)фенола и 2,4-диметил-6-(2-этилтетрадецил)фенола в отношении 81/7.
Смесь изомеров можно разделить с помощью хроматографических методов.
Выход: 749 г (= 72% от теоретической величины)
Температура кипения: 170 200
oC при 1 кРа.
Пример 2. Получение 2,4-диметил-6-втор.гексадецилфенола.
В автоклав емкостью 0,75 л помещают 220 г (1 мол) линейного a-гексадецена (чистота: 92%), 122 г (1 мол) 2,4-ксиленола и 10 г активного М-цеолита в качестве катализатора. Эту реакционную смесь нагревают до 220
oC и перемешивают в течение 15 ч при этой температуре. После охлаждения катализатор отфильтровывают, а непрореагировавшие исходные продукты (ксиленол: температура кипения 40
oC при 10
-1 мбар; d гексадецен: температура кипения 60 70
oC при давлении 8 х 10
-2 мбар) удаляют посредством дистилляции. После этого жидкий остаток подвергают дистилляции в высоком вакууме (10
-2 мбар) при 142 147
oC. Продукт это бесцветная жидкость в виде смеси 2,4-диметил-6-(1-метилпентадецил)фенола и 2,4-диметил-6-(2-этилтетрадецил)фенола в отношении 56/11.
Смесь изомеров отделяют с помощью хроматографических методов.
Элементный анализ: расчетный: C 83,17% H 12,21%
найденный: C 83,14% H 12,08%
Пример 3а. Получение 2,4-диметил-6-втор.додецилфенола. Способ осуществляют аналогично примеру 1. Полученный продукт в виде смеси 2,4-диметил-6-(1-метилундецил)фенола и 2,4-диметил-6-(1-этилдецил)фенола в отношении 53/25. Смесь изомеров можно разделить посредством хроматографических методов. Температура кипения: 175
oС при давлении 4 мбар.
Пример 3b. Получение 2,4-диметил-6-втор.додецилфенола. Получение осуществляют аналогично примеру 1. Полученный продукт в виде смеси 2,4-диметил-6-(1-метилундецил)фенола и 2,4-диметил-6-(1-этилдецил)фенола в отношении 73/15. Смесь изомеров можно отделить посредством хроматографических методов. Температура кипения: 180
oC при давлении 4 мбар.
Пример 4. Получение смеси 2,4-диметил-6-втор.(C
20 - C
24-алкил)фенола. Получение осуществляют аналогично примеру 1. Используют 2,4-ксиленол и a-олефиновую смесь (H
2C CH CH
2 R с R C
17 C
21-алкил) в качестве реактивов. Полученная реакционная смесь содержит 2,4-диметил-6-(1-метилнонадецил)фенол, 2,4-диметил-6-(1-метилгеникозил)фенол и 2,4-диметил-6-(1-метилтрикозил)фенол в отношении 45/35/3. Продукт в виде вязкого масла. Смесь можно разделить с помощью хроматографических методов.
Элементный анализ: расчетный: C 83,88% H 12,84%
найденный: C 84,12% H 13,22%
Пример 5. Получение смеси 2,4-диметил-6-втор.(C
24 - C
30-алкил)фенола. Получение осуществляют аналогично примеру 1. Используют 2,4-ксиленол и a-олефиновую смесь (H
2C CH CH
2 R с R C
21 C
27-алкил) в качестве реактивов. Полученная реакционная смесь содержит 2,4-диметил-6-(1-метилтрикозил)фенол, 2,4-диметил-6-(1-метилпентакозил)фенол, 2,4-диметил-6-(1-метилпентакозил)фенол и 2,4-диметил-6-(1-метилнонакозил)фенол в отношении 15/35/33/14. Продукт в виде воска. Смесь можно разделить посредством хроматографических методов.
Температура кипения: 50 60
oC.
Пример 6. Стабилизирование алкилонитрил-бутадиен-стирол-сополимера (ABS). Указанные в таблицах 1 и 2 присадки растворяют в 40 мл смеси растворителя из гексан/изопропанола. Этот раствор при интенсивном перемешивании добавляют в дисперсию из 100 г AB в 600 л воды, при этом раствор абсорбируется ABS в течение короткого времени (около одной минуты) полностью. ABS-порошок фильтруют и в течение 40 ч высушивают в вакууме при 40
oC. В высушенный порошок добавляют 2% оксида титана (пигмент), 1% амида этилен-бис-стеариновой кислоты (смазка). Смесь доводят до определенного состава в течение 4 минут на двухвалковом станке при 180
oC. Из этого свальцованного листа при 175
o прессуют пластину толщиной 0,8 мм, из которой штампуют образцы для испытания размером 45 х 17 мм
2. Испытание на эффективность добавляемых присадок производят путем теплового старения в сушильной печи с циркуляцией воздуха при 180
oC. В качестве критерия служит появление цвета через 45 минут. Интенсивность окрашивания определяется по ASTMFD 1925-70. Более высокие числа означают более интенсивное желтое окрашивание. Опыты показывают, что желтое окрашивание подавляется в результате добавляемых предложенных соединений достаточно эффективно.
Пример 7. Стабилизация привитого метилметакрилат-бутадиенстирольного сополимера (MBS). Получение присадочной эмульсии. Смесь 6,4 частей соединения из примера 2а, 25,6 частей дилаурилтиодипропионата и 3,4 части стеариновой кислоты нагревают (около 80
oC) до получения расплава. При сильном перемешивании прибавляют теплый раствор из 0,4 частей твердой гидроокиси натрия и 21,4 частей воды. К полученной эмульсии (капли воды в органической среде) прибавляют 42,8 части теплой воды, причем получают инверсную эмульсию, разбавляют эмульсию теплой водой на 1/10 и осторожно перемешивают при 60
oC до использования. Условия коагуляции: Указанное в таблице 3 количество присадочной эмульсии добавляют к 100 мл охлажденного MBS-латекса. Полученную смесь перемешивают 30 мин. Затем смесь прибавляют при 70
oC в 200 мл 0,1 NHCl, причем температура устанавливается

60
oC. При сильном перемешивании доводят значение pН до 5,5 6. Затем суспензию нагревают до 95
oC и перемешивают 5 мин при этой температуре. Суспензию фильтруют и полученный твердый MBS промывают водой и сушат 48 ч при 60
oC в вакууме. Диаметр частиц MB составляет 3 10 мм. Порошок MB подвергают термоанализу на воздухе при 200
oC. Наступающая экзотермическая реакция является степенью разложения полимера. Критерием стабилизации является время до наступления и соответственно максимума экзотермической реакции. Результаты даны в таблице 3.
Полученный ход температуры показывает хорошую стабилизацию полимера.
Пример 8. Стабилизация акрилонитрил-бутадиен-стирольного тройного сополимера (ABS). 1000 частей нестабилизированного ABC -порошка (полибутадиен 25% ) вполне смешивают с 100 частями циклогексана, содержащего 2,5 частей стабилизатора, указанного в таблице 4. Растворитель отделяют в вакууме при 40
oC/N
2. В аппарате Меттлера ДТА 2000 температурная зависимость 5 мг стабилизированного ABS порошка, помещенного на алюминиевый тигель, определяется в кислороде (500 мл/мин) при 180
oC. Характерное изменение температурной кривой наблюдается, когда полимер подвергается деструкции. Критерием термической стабильности полимера является время T
м, необходимое для достижения максимума экзотермической реакции. Достигнутое значение T
м показывает хорошую стабилизацию полимера.
Пример 9. Стабилизация бутадиен/акрилонитрильного каучука (NBR). Нестабилизированный нитрильный каучук в виде латекса (сополимер акрилонитрила и бутадиена), имеющий содержание сухого вещества 26% подогревают до 50
oC. Затем указанный в таблице 5 стабилизатор перемешивают с латексом в виде эмульсии или дисперсии. При эффективном перемешивании латекс медленно добавляют (примерно 50 мл/мин) из капельной воронки к сыворотке, нагретой до 60
oC. Используют 1 л сыворотки, состоящей из 6 г MgSO
4
7H
2O в 1 л деминерализованной воды на 100 г твердого каучука ( 381 г латекса). Отгоняют скоагулированный каучук, промывают деминерализованной водой в течение 2 10 мин при 60
oC, предварительно сушат на воздухе и затем в вакуумной сушилке при 50
oC. Полученный каучук имеет содержание акрилонитрила в количестве 33% и вязкость по вискозиметру Муни, равную 40 45.
Результаты приведены в таблице 5. Критерием деструкции полимера является повышение вязкости по вискозиметру Муни после старения в печи. Вышеизложенные значения показывают хорошую стабилизацию.
Пример 10. Стабилизация карбоксилированного стирол-бутадиен-каучука (x-SBR). При комнатной температуре изготовляют 25%-ный водный стабилизатор-эмульсию. Количество стабилизатора, необходимое для стабилизации, изложено в таблицах 6 и 7, замешивают в 50 г х-SBR-латекса (50% содержания сухого вещества) в течение 5 мин при комнатной температуре. Пленки с 100 мг толщиной льют из стабилизированного x-SBR-латекса. Затем добавляют каждый раз 3 г латекса в чашках Петри (диаметр 6 см). Латекс сушат в течение примерно 18 ч при комнатной температуре и затем его сушат в течение примерно 1 ч при 80
oC. После высушивания пленки подвергают старению в печи с циркуляцией воздуха при 120
oC. Результаты приведены в таблицах 6 и 7. Чем меньше значения, тем ниже пожелтение образцов.
Пример 11. Стабилизация термопластического полиуретана. 30%-ный раствор термопластического полиуретана в диметилформамиде, содержащий указанный в таблице 8 стабилизатор, наносят на стеклопанель. После высушивания примерно 1 ч при комнатной температуре и примерно 18 ч при 80
oC получаются пленки толщиной от 30 до 40 мг, которые подвергаются нагреванию. Результаты приведены в таблице 8. Чем меньше значения, тем ниже пожелтение образцов.
Пример 12. Стабилизация полиацеталя. Композицию полиацеталя, содержащую 0,3 мас. Са-стеарата и 0,3 мас. указанного в таблице 9 стабилизатора, смешивают в пластографе Брабендера в течение примерно 10 мин при 190
oC и затем формуют в изделие, из которого под прессом при 190
oC и давлении 200 бар в течение 3 мин изготовляют пластины толщиной 1 мм. Из пластины штампуют образцы весом 250 мг, которые подвергаются испытанию окислением. Под действием кислорода полиацеталь при повышенной температуре начинает окисляться. Продукты окисления являются летучими и кислотными, растворенные в воде они повышают проводимость в

S/см раствора. Путем добавления стабилизаторов количественно задерживают реакцию окисления до полного расхода стабилизатора. Критерием эффективности стабилизатора является время от начала окисления до его увеличения. Результат приведен в таблице 9.
Результат показывает хорошую стабилизацию образцов полиацеталя.
Пример 13. Стабилизация полиэфирполиола. Стабилизатор, указанный в таблице 10, растворяют в нестабилизированном полиэфирполиоле в атмосфере азота, 20 мг стабилизированного полиэфирполиола подвергают калориметрическому процессу. Пробу нагревают в контрольном приборе в атмосфере кислорода.
Условия испытаний: начальная температура: 110
oC
скорость нагрева: 5
oC/мин.
Критерием эффективности стабилизатора является температура, при которой начинается окисление образца. Чем выше температура, тем лучше стабилизированным является образец. Результаты приведены в таблице 10.
Вышеуказанные результаты показывают хорошую стабилизацию образца.
В нижеследующей таблице 11 приведены полимеры и концентрации стабилизаторов, подтвержденные примерами 6 13.
Формула изобретения
1. Полимерная композиция, включающая 0,05-3,0 от массы полимера алкилзамещенного фенола в качестве стабилизатора, отличающаяся тем, что в качестве полимера она содержит полистирол или его сополимер, или полиуретан, или полиацеталь, или бутадиен-акрилонитрильный каучук, или полиэфирполиол, а в качестве алкилзамещенного фенола соединение общей формулы

где R
1 CH
3, С
2Н
5;
R
2 С
8Н
17 С
30Н
61.
2. Способ стабилизации полимера путем его смешения с 0,05-3,0% от массы полимера алкилзамещенного фенола в качестве стабилизатора, отличающийся тем, что в качестве полимера используют полистирол или его сополимеры, или полиуретан, или полиацеталь, или бутадиен-акрилонитрильный каучук или полиэфирполиол, а в качестве алкилзамещенного фенола используют соединение общей формулы

где R
1 СН
3, С
2Н
5 R
2 С
8Н
17 С
30Н
61.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3