Способ определения вязкости диэлектрической жидкости

 

Использование: для определения вязкости микроколичеств диэлектрической жидкости. Сущность изобретения: способ включает измерение времени движения жидкости по капилляру, с использованием которого вычисляют вязкость. Один конец капилляра помещают в анализируемую жидкость, создают с использованием пары электродов острие-плоскость неоднородное электрическое поле, направленное по оси капилляра, измеряют напряжение между электродами и с использованием измеренных величин рассчитывают вязкость. 1 табл., 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения вязкости жидкости в медицине, биологии, а также для научных исследований в условиях новых космических технологий.

Известен способ определения вязкости, основанный на методе капиллярного вискозиметра [1] в котором используется зависимость времени движения жидкости через капилляр от вязкости.

Наиболее близким по технической сущности к предлагаемому является способ определения вязкости жидкости методом капиллярного вискозиметра, заключающийся в фиксации уровня жидкости при постоянном установившемся режиме течения [2] Оба способа требуют относительно большого количества исследуемой жидкости (до 10 г), занимают много времени на одно измерение (порядка 10 мин) и не позволяют проводить измерения в условиях слабых гравитационных полей и невесомости без создания дополнительных устройств обеспечивающих поток жидкости через капилляр.

Техническим результатом являются: экономия исследуемой жидкости путем измерения вязкости ее микроколичеств (не более 10 мкл на одно измерение); расширение диапазона использования способа (проведение измерений в условиях слабых гравитационных полей и невесомости космические летательные аппараты, орбитальные станции и т.п.); повышение экспрессности способа за счет сокращения времени термостатирования микроколичеств жидкости при измерениях.

Это достигается тем, что в способе определения вязкости диэлектрической жидкости методом капиллярного вискозиметра, заключающемся в измерении времени движения жидкости по капилляру, один срез капилляра помещают в жидкость, а с помощью двух электродов типа острие-плоскость создают неоднородное электрическое поле, направленное по оси капилляра и измеряют напряжение между электродами. Вязкость жидкости определяют по формуле (1) где коэффициент вязкости жидкости; eo электрическая постоянная; диэлектрическая проницаемость жидкости; U напряжение между электродами; t время движения жидкости по длине l капилляра под действием сил электрического поля; b фокусное расстояние электрода-острия; L - расстояние между электродами; r радиус капилляра.

В случае стационарного ламинарного течения вязкой несжимаемой жидкости вдоль оси Z цилиндрического капилляра радиуса r при совместном действии градиента давления p/z и внешней массовой силы f(z), действующей со стороны неоднородного электрического поля на жидкость с диэлектрической проницаемостью , уравнение Навье-Стокса имеет вид (Ландау Л. Д. Лифшиц Е. М. Механика сплошных сред. М. Наука, 1986) (2) где V(y) скорость течения жидкости по капилляру; y радиальная координата; и r динамическая вязкость и плотность жидкости соответственно.

Так как правая часть (2) не зависит от y, то (3) Значение постоянной l находится из граничных условий p=p0 при z=0 и p=p(l) при z=l (4) где l длина столба жидкости в капилляре, образованного за время t под действием сил электрического поля; p0 давление на поверхности жидкости; p(l) гидростатическое давление столба жидкости в капилляре.

Из (3), (4) следует, что

где p = p(l) - po.
Очевидно, что в условиях слабых гравитационных полей и невесомости

В этом случае
(5)
Следовательно, каждому положению мениска жидкости в капилляре соответствует определенное значение (t). Величину скорости движения жидкости по капилляру находят из уравнения (2), которое при указанных условиях сводится к обыкновенному дифференциальному уравнению
(6)
с граничными условиями:
при y=r V=0 условие прилипания на стенке;
при y=0 dv/dy=0 условие стационарности течения.

Решение уравнения (6) при данных граничных условиях есть

Отсюда средняя по сечению скорость жидкости в капилляре равна
(7)
Величина массовой силы, действующей со стороны электрического поля на жидкость в капилляре равна (Ландау Л. Д. Лифшиц Е. М. Электродинамика сплошных сред. Т. 8. -М. Наука, 1982, с. 95)
(8)
где E(z) напряженность электрического поля между электродами.

Расчетную модель электродов удобно представить в виде софокусных гиперболоидов вращения, один из которых аппроксимирует игольчатый электрод, а другой вырождается в плоскость. Тогда можно показать, что напряженность электрического поля на оси капилляра есть
(9)
где U напряжение на электродах; L расстояние между ними; b фокусное расстояние гиперболоида-острия.

Время t, за которое жидкость под действием сил электрического поля пройдет расстояние l, равно
(10)
Подставляя выражение (9) в (8) и проведя интегрирование в (7), с учетом (10) получают формулу (1), по которой определяют вязкость жидкости.

Из приведенного следует, что в данном способе определяющими силами, которые обеспечивают движение жидкости по капилляру, являются силы электрического поля f(z), так как величину dE/dz можно сделать сколь угодно большой за счет соответствующей конфигурации электрода-острия. Поэтому f(z)>g, где g ускорение свободного падения. Следовательно, предложенный способ измерения вязкости диэлектрической жидкости применим в условиях слабых гравитационных полей и невесомости.

Количество жидкости, требуемое на одно измерение, очевидно, очень мало, так как жидкость при измерениях занимает лишь объем капилляра, не вытекая из него. В данном способе объем жидкости для одного измерения не превышает 10 мм3. Отсюда следует, что для такого малого количества жидкости необходимо и малое время его термостатирования, а следовательно и время, необходимое на одно измерение, будет значительно меньше, чем в каких-либо других способах.

На чертеже представлена схема реализации способа.

В микроемкость 1 с исследуемой жидкостью помещают срез капилляра 2. С помощью электродов 3, 4 типа плоскость-острие, которое подключают к источнику 5 постоянного тока высокого напряжения, создают неоднородное электрическое поле, направленное по оси капилляра. Измеряют напряжение между электродами по киловольтметру 6 и время движения жидкости на известной длине капилляра. Вязкость жидкости вычисляют по формуле (1).

Изобретение иллюстрируется следующими примерами.

Измерялась вязкость этиленгликоля и трансформаторного масла. Измерения проводились при нормальных условиях (температура 20 0,5oС) в поле тяжести Земли (g 9,81 м/с2). На электроды подают постоянное напряжение от высоковольтного источника УПУ-10, которое измеряют электростатическим вольтметром С196. Смещение мениска жидкости в капилляре на расстояние l за время t определяют с помощью катетометра КМ-6 и секундомера GОС. Остальные условия проведения измерений представлены в таблице.

Предлагаемый способ по сравнению с прототипом имеет преимущество в экономии исследуемой жидкости так как позволяет проводить измерение вязкости малых ее количеств и сокращает время измерений.

Расширяет область его использования, так как позволяет измерять вязкость жидкости в условиях невесомости или слабых гравитационных полей, так как во всех случаях определяющими являются силы электрического поля, действующие на жидкость.


Формула изобретения

Способ определения вязкости диэлектрической жидкости, включающий измерение времени движения жидкости по капилляру, с использованием которого вычисляют вязкость, отличающийся тем, что один конец капилляра помещают в анализируемую жидкость, создают с использованием пары электродов "острие-плоскость" неоднородное электрическое поле, направленное по оси капилляра, измеряют напряжение между электродами, а вязкость жидкости вычисляют по формуле

где динамическая вязкость жидкости;
eo электрическая постоянная;
диэлектрическая проницаемость жидкости;
U напряжение между электродами;
t время движения жидкости по длине l капилляра под действием сил электрического поля;
b фокусное расстояние электрода-острия;
L расстояние между электродами;
r радиус капилляра.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к газонефтедобыче и может быть использовано при измерении параметров в буровых растворов

Изобретение относится к измерениям вязкости жидкостей в широком интервале параметров состояния

Изобретение относится к исследованию физико-механических свойств порошков, может быть использовано в пищевой, химической и других отраслях промышленности

Изобретение относится к технике калибровки чувствительных элементов, измерительных приборов, в частности капиллярных вискозиметров

Изобретение относится к cnotoбаы определения газосодержания в газожидкостных эмульсиях для колоннок с насадкой

Изобретение относится к области определения свойств полимерных материалов, в частности индекса расплава, непосредственно в процессе производства

Изобретение относится к измерительной технике и использует измерение времени заполнения емкости объемом (10 мл) смазочным материалом (вязкости среды), плотности, коррозионной активности смазочной среды по бальной системе, сравнивая с эталоном, а также обнаружение в масле продуктов износа узлов трения, неполного сгорания топлива, охлаждающей жидкости

Изобретение относится к медицине, а именно к средствам, предназначенным для измерения физических свойств крови

Изобретение относится к способам определения вязкости нелинейно-вязких жидкостей. В способе определения вязкости нелинейно-вязких жидкостей в качестве датчика вязкости используют частотно-регулируемый привод в комплекте с асинхронным электродвигателем мешалки, у которого стабилизируют синхронную частоту питания и напряжение двигателя. При этом по частоте вращения вала мешалки и температуре жидкости рассчитывают вязкость по соотношению: ν=b0(Ω,t)+b1(Ω,t)ω+b2(Ω,t)ω2, где ν - вязкость полимера, ω - частота вращения вала электродвигателя, t - температура полимера, Ω - стабилизированная синхронная частота электродвигателя, b0, b1 и b2 - коэффициенты, зависящие от синхронной частоты и температуры. Устройство для определения вязкости нелинейно-вязких жидкостей включает измерительную емкость с термометром и мешалкой, вращаемой асинхронным двигателем, который управляется частотным преобразователем регулируемой частоты и напряжения. При этом на вал мешалки прикреплен магнит, перемещение которого фиксируется датчиком Холла и осциллографом, сигналы с которого передаются на компьютер. Техническим результатом изобретения является разработка метода определения вязкости неньютоновских жидкостей на потоке, при котором в процессе измерения не должна разрушаться пространственная структура жидкой среды. 2 н.п. ф-лы, 3 ил.

Изобретение относится к медицине и биологии и может быть использовано для оценки изменений агрегатного состояния клеток крови и точной диагностики расстройств микроциркуляции крови при различных заболеваниях и патологических состояниях. Капиллярный вискозиметр включает основание, рабочий капилляр и опору рабочего капилляра. При этом опора рабочего капилляра присоединена к основанию посредством поворотного устройства, позволяющего устанавливать заданный угол наклона рабочего капилляра относительно горизонта в пределах от -90° до +90°. Кроме того, капиллярный вискозиметр дополнительно содержит устройство измерения угла наклона рабочего капилляра относительно горизонта. Еще одним отличием капиллярного вискозиметра является то, что поворотное устройство включает сервопривод вращения. Кроме того, поворотное устройство может включать привод вращения на базе шагового двигателя. Также капиллярный вискозиметр включает в себя устройство измерения скорости перемещения жидкости в капилляре. Устройство измерения скорости перемещения жидкости в капилляре может быть построено на базе двух смещенных относительно друг друга в направлении движения потока оптических датчиков. Техническим результатом является расширение функциональных возможностей и повышение точности. 5 з.п. ф-лы, 3 ил.

Изобретение относится к медицине и может быть использовано для комплексного анализа реологических свойств крови in vivo. В зоне интереса зондируют импульсами ультразвуковых колебаний в режиме энергетического цветового допплеровского кодирования протекающий по сосуду поток крови. Определяют диаметр d сосуда, толщину пограничного слоя потока крови, площадь пограничного слоя потока крови, площадь осевого потока крови, частоту сокращений сердца и рассчитывают на основе полученных данных параметры, характеризующие реологические свойства крови: кинематическую вязкость крови ν, число Уомерсли α, параметр α2, коэффициент ε структуры потока. Определяют пиковую систолическую скорость Vps осевого потока крови и среднюю максимальную скорость Vm осевого потока крови, межинтимальный диаметр сосуда и рассчитывают на основе этих параметров число Re Рейнольдса, скорость V сдвига и напряжение τ сдвига. Зондирование проводят с картой распределения интенсивности движения по сечению потока и дополнительно определяют с использованием измерений площадь Sos осевого потока в систолу, площадь Sns потока в систолу, площадь Sod осевого потока в диастолу, площадь Snd потока в диастолу, площадь Sδs в систолу, площадь Sδd в диастолу, время ts систолы, время td диастолы, время t сердечного цикла и рассчитывают на основе полученных данных: усредненную толщину δxs пограничного слоя в систолу (см) по формуле: δxs=Sδs/[√π*(√Sns+√Sos)], где Sδs - площадь пограничного слоя в систолу, Sns - площадь потока в систолу, Sos - площадь осевого потока в систолу; усредненную толщину δxd пограничного слоя в диастолу (см) по формуле: δxd=Sδd/[√π*(√Snd+√Sod)], где Sδd - площадь пограничного слоя в диастолу, Snd - площадь потока в диастолу, Sod-ω - угловая скорость (с-1); νs - кинематическую вязкость крови в систолу (cSt) по формуле: νs=ωδxs2; νd - кинематическую вязкость крови в диастолу (cSt) по формуле: νd=ωδxd2; νh - гемодинамическую вязкость крови (cSt) по формуле: νh=[(νs х ts)+(νd x td)]/t; Σhs - коэффициент реологической эффективности кровотока в систолу по формуле: Σhs=Sos/Sns, где Sos - площадь осевого потока в систолу; Sns - площадь потока в систолу; Σhd - коэффициент реологической эффективности кровотока в диастолу по формуле: Σhd=Sod/Snd, где Sod - площадь осевого потока в диастолу; Snd - площадь потока в диастолу; Σh - коэффициент реологической эффективности кровотока за сердечный цикл по формуле: Σh=[(Σhs х ts)+(Σhd х td)]/t. Определяют характеристики движения эритроцитов в осевом потоке, такие как интенсивность движения, оценивая ее по уровню интенсивности окрашивания цветовой картограммы осевого потока, сравнивая его с уровнем интенсивности цветовой шкалы, расположенной на экране монитора; степень дезорганизации потока по структуре и степени гетерохромности цветовой картограммы осевого потока, для чего определяют структурный коэффициент осевого потока СКОП как отношение площади участков осевого потока с максимальной интенсивностью окрашивания Sm к площади осевого потока So и при СКОП=1 считают структуру потока организованной нормально, а при СКОП<1 – дезорганизованной; градиент интенсивности движения эритроцитов по направлению от стенки сосуда к осевому потоку, оценивая степень локальной устойчивости потока по характеру контуров осевого потока и полос пограничного слоя, степени центрации осевого потока и равномерности толщины пограничного слоя по сечению сосуда. Способ обеспечивает повышение эффективности анализа реологических свойств крови за счет расчета большого числа количественных реологических характеристик кровотока и визуального выявления, что дает возможность локализовать участки сосуда с нарушением гемореологических параметров. 13 ил., 1 пр.

Изобретение относится к области испытания топлив. Способ включает подачу охлажденного до заданной температуры топлива через фильтр тонкой очистки, варьирование значениями подачи и давления топлива в топливной линии, регистрацию расхода топлива через фильтр тонкой очистки и критической температуры подачи топлива, дополнительно задают значения скорости охлаждения топлива, при этом формируют из 15 этапов цикл испытаний как необходимую и минимально достаточную совокупность режимов испытаний в виде матрицы, на каждом этапе заданной продолжительности фиксируют критическую температуру подачи топлива в момент достижения расхода топлива через фильтр тонкой очистки предельного значения, по завершении цикла испытаний определяют обобщенный показатель Тисп низкотемпературной прокачиваемости испытуемого топлива, сравнивают полученное значение со значением этого показателя для топлива, принятого за эталон Тэт и прошедшего идентичный цикл испытаний, и при значении Тис>Тэт рекомендуют топливо к применению в двигателях транспортных средств, при этом обобщенный показатель Тисп(эт) низкотемпературной прокачиваемости топлива вычисляют по заданной формуле. Достигается повышение информативности и достоверности оценки за счет расширения и создания условий испытаний, в большей степени приближенных к реальным условиям эксплуатации техники. 6 табл.
Наверх