Сигнальный процессор оптико-спектрального анализатора

 

Использование: в области спектрального анализа и может найти применение для качественного и количественного контроля состава пород, технологических продуктов, биологических объектов и т.п. Сущность изобретения: процессор содержит логарифмический усилитель 10, преобразователь ток-напряжение 6, блок 7 компенсации фона, импульсный генератор 14, распределитель 13 импульсов, интеграторы 8 и 20, ключ 9, инвертор 18, мультиплексоры 16, 19 и 21, блок 11 вычитания, источник 15 опорного напряжения, блок 22 масштабирования и блок 12 выборки-хранения. 5 з.п. ф-лы, 2 ил.

Изобретение относится к области спектрального анализа и может найти применение для качественного и количественного контроля состава поpод, технологических продуктов, биологических объектов и т.п.

Типичная схема атомно-абсорбционного спектрофотометра содержит последовательно расположенные источник света, атомизатор, монохроматор и фотоприемник, выход которого через предварительный усилитель соединен со входом сигнального процессора или аналого-цифрового преобразователя. Как правило, в схеме имеется опорный канал и процессор, осуществляющий математическую обработку и коррекцию данных. В состав процессора входят блоки постоянной и оперативной памяти, таймер, арифметический блок, блок прерываний и т.д. [1] Подобные анализаторы позволяют проводить измерения в сложных матрицах, однако характеризуются недостаточной чувствительностью. Кроме того, цифровые сигнальные процессоры сложны и дороги, а в ряде случаев способствуют дополнительному снижению чувствительности.

Более высокой чувствительностью обладают флуоресцентные анализаторы, блок-схема которых аналогична вышеописанной [2] Однако эти приборы не дают достоверных показаний в сложных матрицах. А при использовании в их составе цифровых сигнальных процессоров последние привносят вышеупомянутые недостатки: высокая стоимость, сложность и дополнительное снижение чувствительности.

Известен гетеродинный анализатор, способный работать как в режиме абсорбции, так и в режиме флуоресценции [3] Он содержит сканнер, спектральный фильтр, пространственный фильтр, детектор, полосовой фильтр, лазер с расщепителем луча и блоком сдвига частоты, сигнальный и центральный процессоры, процессор отображения и дисплей с соответствующими связями. На объект направляется два луча различной частоты, оба сигнала регистрируются. Сигнал на частоте биений используется для коррекции и определения количества вещества.

Эти операции осуществляются в цифровом сигнальном процессоре, которому, таким образом, свойственны упомянутые недостатки: сложность, высокая стоимость и низкая разрешающая способность.

Наиболее близким к предложенному является сигнальный процессор оптико-спектрального анализатора, содержащий последовательно соединенные предварительный усилитель и логарифмический усилитель [4] Поскольку этот процессор может работать только в одном режиме, его выходная информация недостаточно достоверна, а область возможного использования и функциональные возможности узки.

Цель изобретения расширение функциональных возможностей и области применения сигнального процессора при сохранении его высокой разрешающей способности, простоты и невысокой стоимости, повышение достоверности его показаний, создание прибора, который обеспечивает точный количественный анализ веществ любого состава.

Цель достигается тем, что сигнальный процессор оптико-спектрального анализатора, содержащий логарифмический усилитель, снабжен преобразователем ток-напряжение, блоком компенсации фона, импульсным генератором, распределителем импульсов, двумя интеграторами, первым ключом, инвертором, тремя мультиплексорами, блоком вычитания, источником опорного напряжения, блоком масштабирования и блоком выборки-хранения, при этом выход сигнального процессора соединен со входом преобразователя ток-напряжение, выход которого соединен с информационным входом блока компенсации фона, выход которого соединен с информационным входом первого интегратора, выход которого соединен со входами первого ключа и логарифмического усилителя, выходы которых объединены и соединены с первым входом блока вычитания, второй вход которого соединен с выходом первого мультиплексора, информационные входы которого соединены с выходом источника опорного напряжения и общей шиной соответственно, выход блока вычитания подключен к информационному входу блока выборки-хранения, выход которого соединен со входом инвертора и первым информационным входом второго мультиплексора, второй информационный вход которого соединен с выходом инвертора, причем выход второго мультиплексора подключен к информационному входу второго интегратора и первому информационному входу третьего мультиплексора, второй информационный вход и выход которого соединены соответственно с выходом второго интегратора и входом блока масштабирования, выход которого подключен к информационному выходу сигнального процессора, управляющие входы которого подключены к управляющим входам мультиплексоров, ключа и второго интегратора, а выход импульсного генератора соединен со входом распределителя импульсов, выходы которого подключены к управляющим входам блока выборки-хранения, блока компенсации фона и первого интегратора, а также к управляющим выходам сигнального процессора.

Целесообразно также снабдить сигнальный процессор вторым ключом и блоком коррекции, выход и информационный вход которого подключены соответственно к третьему входу блока вычитания и выходу второго ключа, информационный и управляющий входы которого соединены с выходом блока выборки-хранения и одним из управляющих входов сигнального процессора.

При этом второй выход блока коррекции может быть соединен с управляющим входом распределителя импульсов.

Кроме того, сигнальный процессор может быть выполнен с двумя блоками сравнения, подключенными к выходам первого интегратора и блока коррекции.

Рекомендуется также один из управляющих входов сигнального процессора подключить к управляющему входу блока масштабирования и/или блока компенсации фона.

И, наконец, блок компенсации фона может быть выполнен в виде интегратора, мультиплексора и блока вычитания, причем информационный вход блока компенсации соединен с первым информационным входом мультиплексора и входами интегратора и блока вычитания, выход которого соединен со вторым информационным входом мультиплексора, выход которого соединен с выходом блока компенсации фона, управляющие входы которого подключены к управляющим входам интегратора и мультиплексора.

На фиг.1 изображена функциональная схема анализатора, в состав которого входит предлагаемый процессор; на фиг.2 схема блока компенсации фона.

Анализатор (фиг.1) содержит источники света 1 и 2, амортизатор (горелку) 3, монохроматор 4, фотоприемник (например, фотоэлектронный умножитель) 5, преобразователь 6 ток-напряжение, блок 7 компенсации фона, первый интегратор 8, первый ключ 9, логарифмический усилитель 10, блок 11 вычитания, блок 12 выборки-хранения, распределитель 13 импульсов, генератор 14 импульсов, источник 15 опорного напряжения, первый мультиплексор 16, блок 17 управления режимом работы, инвертор 18, второй мультиплексор 19, второй интегратор 20, третий мультиплексор 21, блок 22 масштабирования, блок 23 регистрации, блок 24 сравнения (перегрузка по максимуму), второй ключ 25, блок 26 коррекции и блок 27 сравнения (перегрузка по минимуму).

Источники 1 и 2 образуют управляемый источник света, который может работать в режиме абсорбции (включен источник 1), флуоресценции (включен источник 2) и эмиссии (выключены оба).

В качестве управляемого источника света может быть использован и один источник, способный изменять параметры излучения (спектр, интенсивность) или работать по меньшей мере в двух режимах без изменения параметров.

Сигнальный процессор образован элементами 6-16, 17-22, 24-27. Он выполнен с возможностью работы в режимах абсорбции, флуоресценции и эмиссии.

Преобразователь 6 может быть выполнен в виде операционного усилителя.

Выполнение блока 7 показано на фиг.2. Он может содержать интегратор 28, блок 29 вычитания и мультиплексор 30. Последний обеспечивает отключение блока 7. В случае отсутствия мультиплексора 30 выходом блока 7 является выход блока 29.

Управляющие входы интеграторов 8, 20 и 28 представляет собой управляющие шины, на которые подаются сигналы выборки (этот сигнал замыкает входной ключ интегратора, определяя таким образом время интегрирования) и/или сброса.

На второй вход блока 11 подается уменьшаемое, на остальные вычитаемые.

В качестве распределителя 13 используют стандартную микросхему (в этом случае возникает некоторая избыточность) или дешифратор, обеспечивающий требуемую временную диаграмму, вид которой однозначно определяется нижеприведенным описанием работы устройства. На выходах распределителя 13, подключенных к источникам 1, 2, устанавливают усилители мощности, обеспечивающие запитку источников 1, 2 импульсным током. Усилители могут быть отнесены и к источникам 1, 2. Они могут снабжаться выходными ключами, управляемыми от блока 17. Возможно также использование одного усилителя мощности (блока импульсного питания), установленного между распределителем 13 и источниками 1, 2 с выходным мультиплексором, управляемым от блока 17. Во всех описанных модификациях блок 17 обеспечивает включение и выключение любого из источников 1, 2. На выходах блока 13, соединенных с управляющими входами интегратора 8 и/или интегратора блока 7, могут быть установлены управляемые формирователи импульсов, изменяющие (одновременно или раздельно) длительность (скважность) импульсов, задающих время интегрирования, под действием одного или двух сигналов, поступающих на распределитель 13 от блока 26.

Блок 17 может быть выполнен в виде клавиатуры, наборного поля, блока тумблеров и т.п. снабженных таймером для управления интегратором 20 (задания времени интегрирования и сигнала сброса).

Блок 22 выполняется в виде усилителя с изменяемым коэффициентом передачи.

В качестве блока 23 может использоваться аналоговый или цифровой вольтметр.

На выходах компараторов блоков 24, 27 устанавливают индикаторы перегрузки.

Блок 26 может быть выполнен в виде источника постоянного напряжения, управляемого напряжением. Он может быть выполнен также в виде интегратора. Для управления длительностью выходных импульсов распределителя 13 блок 26 выполняется двухканальным (одинаковые каналы объединены по входу) или снабжается регулируемым источником напряжения, иным регулятором, воздействующим, например, на переменный резистор управляемого расширителя импульсов в распределителе 13.

Устройство работает следующим образом.

В режиме абсорбции с помощью блока 17 включают источник 1, излучение которого поглощается атомами исследуемого вещества в атомизаторе 3. Прошедший монохроматор 4 свет регистрируется фотоприемником 5, и информационный сигнал в виде импульсов тока поступает на вход преобразователя 6.

Блок 7 предназначен для исключения из информационного сигнала постоянной составляющей фона. В принципе этого можно достичь, используя блок выборки-хранения, запоминающий уровень сигнала между информационными импульсами, и блок вычитания, уменьшающий информационный сигнал на эту величину. Однако применение интегратора 28 предпочтительно, так как позволяет снизить влияние помех.

На выходе интегратора 8, интегрирующего каждый поступающий импульс, возникает напряжение, пропорциональное вольтсекундной площади очередного импульса. Логарифм этого напряжения (ключ 9 разомкнут) с выхода усилителя 10 поступает на блок 11, где вычитается из постоянного напряжения источника 15 (5 В). После фиксации величины разности блоком 12 осуществляется сброс интегратора 8. В результате выходное напряжение блока 12 изменяется только под действием информативной составляющей сигнала. Это напряжение, минуя инвертор 18, поступает на блок 22 непосредственно или через интегратор 20, обеспечивающий экспозицию в течение заданного времени. Интенсивность данной спектральной линии отображается в блоке 23.

В режиме флуоресценции работает только источник 2. При этом ключ 9 замкнут, а на вход вычитаемого блока 11 подается нулевой сигнал с общей шины. Необходимое при этом изменении знака достигается инвертором 18, выходное напряжение которого через мультиплексор 19 поступает на интегратор 20 или непосредственно на блок 22. Рекомендуется также при переходе к режиму флуоресценции в амортизаторе 3 включать круглую горелку, что может делаться автоматически по сигналу от блока 17.

Точно также в автоматическом режиме, например с использованием электропривода, может осуществляться настройка монохроматора 4.

В режиме эмиссии отключают оба источника 1, 2 и блок 7, подавая через мультиплексор 30 не выходной сигнал вычитателя 29, а входной сигнал блока 7. В остальном этот режим совпадает с режимом флуоресценции за исключением соответствующих изменений длины волны монохроматора 4, времени экспозиции и коэффициента передачи блока 22.

Настройку анализатора проводят на холостой и/или эталонной пробе. При этом в соответствующем режиме работы анализатора с помощью блока 17 замыкают ключ 25. Проще всего выполнить блок 26 в виде интегратора. При этом на выходе последнего возникает напряжение, компенсирующее входной сигнал блока 26. После размыкания ключа 25 это напряжение сохраняется, так что анализатор готов к работе в том или ином режиме. Если же блок 26 выполнен с двумя каналами и двумя выходами, то ключ 25 рекомендуется выполнить сдвоенным, с тем чтобы по соответствующим управляющим сигналам блока 17 производить раздельную подстройку напряжения на третьем входе блока 11 и длительности выходных импульсов распределителя 13.

Таким образом, предлагаемый анализатор позволяет работать в двух или трех выбранных режимах. При этом весьма существенно, что в режиме абсорбции, флуоресценции или эмиссии используются одни и те же блоки и элементы анализатора и сигнального процессора. Это позволяет не только упростить устройство, снизить его стоимость и габариты, но и обеспечивает сопоставимость результатов анализа, проведенного различными методами. Это необходимо для уточнения результатов анализа, проведенного одним из методов. Необходимость использования одновременно нескольких режимов работы возникает и при анализе объектов неопределенного состава. Например, при анализе сточных вод сначала в режиме абсорбции определяют солевой состав, влияние матрицы и в случае незначительного неселективного поглощения переходят к режиму флуоресценции. Натрий и калий лучше идентифицировать в режиме эмиссии, а при определении меди необходимо использовать как режим абсорбции, так и режим флуоресценции.

Проведенные испытания показали, что в режиме абсорбции чувствительность анализатора с данным процессором составляет 0,02 мкг/мл, а в режиме флуоресценции 0,001 мкг/мл.

Благодаря своим малым габаритам анализатор может быть выполнен переносным и использован для автоматизированного экспресс-анализа.

Формула изобретения

1. Сигнальный процессор оптико-спектрального анализатора, содержащий логарифмический усилитель, отличающийся тем, что он снабжен преобразователем ток-напряжение, блоком компенсации фона, импульсным генератором, распределителем импульсов, двумя интеграторами, первым ключом, инвертором, тремя мультиплексорами, блоком вычитания, источником опорного напряжения, блоком масштабирования и блоком выборки-хранения, при этом вход сигнального процессора соединен со входом преобразователя ток-напряжение, выход которого соединен с информационным входом блока компенсации фона, выход которого соединен с информационным входом блока компенсации фона, выход которого соединен с информационным входом первого интегратора, выход которого соединен с входами первого ключа и логарифмического усилителя, выходы которых объединены и соединены с первым входом блока вычитания, второй вход которого соединен с выходом первого мультиплексора, информационные входы которого соединены с выходом источника опорного напряжения и общей шиной соответственно, выход блока вычитания подключен к информационному входу блока выборки-хранения, выход которого соединен с входом инвертора и первым информационным входом второго мультиплексора, второй информационный вход которого соединен с выходом инвертора, причем выход второго мультиплексора подключен к информационному входу второго интегратора и первому информационному входу третьего мультиплексора, второй информационный вход и выход которого соединены соответственно с выходом второго интегратора и входом блока масштабирования, выход которого подключен к информационному выходу сигнального процессора, управляющие входы которого подключены к управляющим входам мультиплексоров, ключа и второго интегратора, а выход импульсного генератора соединен с входом распределителя импульсов, соответствующие выходы которого подключены к управляющим входам блока выборки-хранения, блока компенсации фона и первого интегратора, а также к управляющим выходам сигнального процессора.

2. Процессор по п. 1, отличающийся тем, что он снабжен вторым ключом и блоком коррекции, первый выход и информационный вход которого подключены соответственно к третьему входу блока вычитания и выходу второго ключа, информационный и управляющий входы которого соединены с выходом блока управления и одним из управляющих входов сигнального процессора.

3. Процессор по п. 2, отличающийся тем, что второй выход блока коррекции подключен к управляющему входу распределителя импульсов.

4. Процессор по п. 2, отличающийся тем, что он снабжен первым и вторым блоками сравнения, подключенными соответственно к выходу первого интегратора и третьему выходу блока коррекции.

5. Процессор по п. 1, отличающийся тем, что один из его управляющих входов подключен к управляющему входу блока масштабирования и/или блока компенсации фона.

6. Процессор по п. 1, отличающийся тем, что блок компенсации фона выполнен в виде интегратора, мультиплексора и блока вычитания, причем информационный вход блока компенсации фона соединен с первым информационным входом мультиплексора и входами интегратора и блока вычитания, выход которого соединен с вторым информационным входом мультиплексора, выход которого соединен с выходом блока компенсации фона, управляющие входы которого подключены к управляющим входам интегратора и мультиплексора.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к аналитической химии и может быть использовано для установления содержаний примесных компонентов в пробах и при аттестации стандартных образцов и аналогичных им по назначению веществ, в частности при определении малых содержаний компонентов (примесей) в твердых монолитных веществах и материалах

Изобретение относится к оптической спектроскопии

Изобретение относится к измерительной технике

Изобретение относится к геологическим, экологическим, технологическим и др

Изобретение относится к области нелинейной оптики, а именно к спектральной измерительной технике, и может быть использовано для исследования структуры различных веществ, в том числе биологических объектов, по полученным эмиссионным спектрам в ИК (инфракрасном) среднем диапазоне

Изобретение относится к магнитным измерениям, исследованию состава веществ путем определения их магнитных, магнито-оптических и спектральных характеристик и может найти применение для качественного и количественного контроля состава пород, технологических продуктов, биологических объектов и т.п

Способ содержит следующие этапы: стальную полосу с покрытием приводят в движение по дугообразной траектории на наружной поверхности (813) барабана (8), вращающегося вокруг оси (51), с цилиндрической стенкой, контактно направляющей полосу, абляционный лазерный луч направляют в полости внутри цилиндрической стенки таким образом, чтобы его оптическое падение происходило по оси нормали (41) к наружной поверхности барабана в точке-мишени (11) контакта полосы и барабана, прохождение луча через стенку происходит через отверстие (811) стенки, прозрачное для луча. Плазменное спектральное излучение от лазерной абляции в точке контакта отбирают за счет оптического отражения в направлении оси нормали (41) к наружной поверхности барабана и через отверстие, после чего направляют в блок спектрального измерения. Ось нормали (41) к наружной поверхности, соответствующей оптическому падению и отражению, приводят во вращение синхронно с барабаном. Технический результат - обеспечение измерения при спектральном анализе слоя металлического покрытия, наносимого на поверхность стальной полосы, находящейся в движении и имеющей разные форматы и разные скорости движения, потенциально превышающие 1 м/с. 3 н. и 12 з.п. ф-лы, 8 ил.
Изобретение относится к области материаловедения и может быть использовано при оценке влияния структуры стали на аналитический сигнал при проведении эмиссионного спектрального анализа элементного состава. способ включает измерение интенсивностей входящих в состав стали химических элементов эмиссионно-спектральным методом на исходных и термообработанных образцах, что позволяет обеспечить высокую точность и информативность контроля элементного состава и структуры стали. 2 з.п. ф-лы, 2 табл.
Наверх