Рентгеновский поляриметр

 

Сущность изобретения: поляриметр содержит полупроводниковый рентгеновский конвертер и блок регистрации и обработки данных. Конвертор выполнен в виде стопы фотоэлементов, составленных из чередующихся полупроводника и металла, с толщиной каждого слоя порядка длины пробега первичных фотоэлектронов, генерируемых при поглощении в полупроводнике направленного вдоль слоев пучка рентгеновских фотонов, причем эффективный атомный номер полупроводника много больше атомного номера металла. Амплитуда регистрируемых сигналов конвертора зависит от степени поляризации рентгеновского излучения и от величины азимутального угла между плоскостью поляризации и плоскостями слоев конвертора, что позволяет по измеренной степени анизотропии распределения амплитуд сигналов, используя калибровочные данные, определить степень и направление поляризации. Изобретение может быть использовано для диагностики сверхгорячей, в том числе термоядерной, неравновесной и неоднородной плазмы в лабораторных, натурных и астрофизических экспериментах.1ил.

Изобретение относится к технике измерения линейной поляризации рентгеновского излучения "классического" диапазона энергией фотонов 10-100 кэВ и может быть использовано для диагностики сверхгорячей, в том числе термоядерной, неравновесной и неоднородной плазмы в лабораторных и астрофизических экспериментах.

Известны рентгеновские поляриметры, работающие в указанном диапазоне энергий, в которых используется азимутальная анизотропия томсоновского рассеяния поляризованного рентгеновского излучения (см. И.Тиндо и др.Рентгеновский поляриметр для исследования солнечных вспышек (Кратк. сообщ. по физ. (ФИАН), 1970, N 7, с.15), Tindo et al. Rontgenpolarimeter vonInterkosmos-7" fur die Untersuchung von Strahlung der Sonneneruptionen:(Radio- Fernsechen-Elektronik, 1974, 23, 18)). Основным элементом в этих устройствах является рассеиватель рентгеновского излучения, выполненный из материала с малым эффективным атомным номером и, соответственно, с малым сечением фотопоглощения рентгеновских фонов, например из лития, бериллия, графита, гидрида лития. Вокруг рассеивателя установлены фотоэлектрические приемники, измеряющие интенсивность потоков рентгеновских фотонов, рассеянных на угол около 90o под различными азимутальными углами. Для исключения возможных систематических ошибок определения поляризации, связанных с различием эффективностей отдельных фотоэлектрических приемников, в ряде конструкций томсоновских поляриметров детектор поляризации рассеиватель с фотоэлектрическими приемниками размещают на поворотном или вращающемся приводе (либо вращают весь поляриметр).

При энергиях фотонов, больших 40-50 кэВ, возможно также применение поляриметров комптоновского типа (см. G.Chanan et al. Prospect for solar flare X-ray polarimetry (Sol.Phys. 1988, 118, N 1/2, 309). В этих приборах, помимо интенсивности анизотропно рассеянного рентгеновского излучения, регистрируют также электроны отдачи, что позволяет с помощью схемы совпадений резко снизить фон проникающей радиации и тем самым повысить чувствительность измерений поляризации. В комптоновских поляриметрах рассеиватель выполнен из сцинтиллирующего пластика. Сцинтилляции, вызванные электронами отдачи, регистрируются фотоумножителем.

Основными недостатками томсоновских и комптоновских поляриметров являются их низкая абсолютная эффективность, обусловленная неблагоприятной геометрией рассеяния при типичном соотношении сечений рассеяния и поглощения в "классической" области энергией, а также невозможность получения информации о пространственном распределении поляризации в источнике излучения (например, в области солнечной вспышки).

Наиболее близким к предлагаемому является рентгеновский поляриметр, принятый за прототип, предложенный Н.Tsunemi и др. (Detection of X-ray polarisation with a charge coupled device/NIM, 1992, A321, 629/), основанный на использовании метода измерения азимутальной асимметрии распределения зарядных треков, возникающих в полупроводнике при пролете первичных фотоэлектронов, генерируемых при поглощении в нем поляризованного рентгеновского излучения. В описываемом приборе анализируемый поток рентгеновских фотонов с энергией 15-37 кэВ направляют на фотоэлектрический конвертор двумерную ПЗС-фотоматрицу с размером элементов (пикселей), сравнимым с длиной пробега в кремнии первичных фотоэлектронов (при данной энергии фотонов). При этом можно ожидать, что для части событий поглощения рентгеновского фотона сигнал будет зарегистрирован не в одном, а одновременно в двух (или нескольких при достаточно малом размере элементов) пикселях, расположенных вдоль трека фотоэлектрона. Действительно, авторами наблюдалась некоторая азимутальная асимметрия парных событий, обусловленная преимущественной ориентации треков в направлении электрического вектора падающих на ПЗС-матрицу поляризованных рентгеновских фотонов.

Основным недостатком устройства-прототипа является низкая эффективность регистрации рентгеновских фотонов, связанная с весьма неблагоприятным соотношением длин пробега в веществе рентгеновских фотонов и генерируемых ими первичных фотоэлектронов (соответственно, миллиметры и сантиметры по сравнению с микронами). В результате, конвертор использует ничтожную часть энергии подающего рентгеновского потока ту, что поглощается в активном слое ПЗС-матрицы (толщиной в несколько микрон). В цитируемой работе получена также крайне низкая поляризационная чувствительность, а именно при регистрации рентгеновского излучения со степенью поляризации в 60-75% величина азимутальной асимметрии парных событий (фактор поляризационной модуляции составила, в зависимости от энергии, от 1 до 5% Столь малый поляризационный эффект, по-видимому, обусловлен слишком большим по сравнению с пробегом фотоэлектронов размером пикселей ПЗС-матрицы 12х12 мкм2.

Цель изобретения повышение эффективности и чувствительности поляриметра в широком диапазоне энергией фотонов 10-100 кэВ.

Для этого предлагается устройство, включающее в себя соединенные между собой конвертор и блок регистрации и обработки данных. При этом конвертор выполнен в виде чередующихся слоев полупроводника и металла, образующих набор фотоэлементов "металл полупроводник металл" с толщиной каждого слоя порядка длины пробега первичных фотоэлектронов, генерируемых в полупроводнике при поглощении рентгеновских фотонов, распространяющихся вдоль слоев конвертора, причем эффективный атомный номер Zэфф материала полупроводника больше атомного номера Z металла, а размер конвертора в направлении по оси рентгеновского пучка соответствует толще для рентгеновского излучения порядка и больше единицы.

Сущность изобретения состоит в том, что амплитуда сигнала при поглощении в конверторе рентгеновского фотона зависит от направления трека генерируемого при этом фотоэлектрона направлен ли он вдоль или поперек слоев.

В зависимости от направления трека фотоэлектрона большая или меньшая его часть приходится на распространение в полупроводнике и, соответственно, металле. При этом регистрируются сигналы, большие или меньшие по величине (амплитуде), что позволяет определить степень и направление поляризации. При этом конвертор может иметь толщину, соответствующую его оптической толще в направлении распространения рентгеновских лучей, порядка и более единицы. В результате, одновременно в полной мере выявляется анизотропия в распределении треков и эффективно используется основная часть энергии излучения. Светосила устройства определяется площадью переднего торца конвертора и может быть сделана достаточно большой при использовании большого числа элементов.

При несоблюдении вышеперечисленных требований чувствительность и эффективность поляриметра снижаются. Так, при использовании слоев полупроводника толщиной больше длины свободного пробега фотоэлектронов снижается величина фактора модуляции, так как при этом амплитуда сигналов от фотоэлектронов, распространяющихся поперек слоев, сравнивается с амплитудой от электронов, распространяющихся вдоль слоев. Увеличение толщины слоев металла снижает среднюю эффективность конвертора. Изготовление металлических слоев с атомным номеров Z>Zэфф полупроводника также приводит к добавочному неэффективному поглощению рентгеновского излучения.

Предлагаемое устройство представлено на чертеже.

На чертеже и в тексте приняты следующие обозначения: h анализируемый поток рентгеновского излучения; р трек фотоэлектрона, идущий вдоль слоя конвертора; s трек фотоэлектрона, идущий поперек слоев конвертора; 1 - конвертор, узел, в котором при поглощении рентгеновских фотонов генерируются электрические сигналы; 2 блок регистрации и обработки данных (узел, в котором сигналы регистрируются, производится их предварительная обработка от вычитания фона до сравнения с калибровочными данными с целью определения величины и направления поляризации по результатам измерений); 3 поворотный или вращающийся привод; 4 слой полупроводника, в котором преимущественно поглощаются рентгеновские фотоны и при пролете фотоэлектронов генерируется электрический сигнал (заряд); 5 слой металла, в котором поглощение рентгеновских фотонов мало и при пролете фотоэлектрона сигнал не генерируется.

Устройство содержит конвертор 1, соединенный с блоком регистрации и обработки данных 2. В зависимости от конкретного метода измерения азимутальной асимметрии распределения треков конвертор может быть установлен на поворотном или вращающемся приводе 3.

Конвертор 1 составлен из слоев активного вещества полупроводника 4 с большим эффективным атомным номером Zэфф' например Ge, Pds, Cds (Cu, Cl), и пассивного вещества металла 5 с малым атомным номером z, например алюминия.

Толщина каждого слоя полупроводника 4 в конверторе, также как и каждого слоя металла 5 порядка средней длины пробега первичного фотоэлектрона при данной энергии рентгеновского фотона. Толщина активного и пассивного слоев - параметры, подлежащие расчетной оптимизации при конструировании конвертора. В частности, при работе в широком интервале энергий фотонов возможно использование нескольких, установленных последовательно по ходу лучей, конверторов с различной толщиной слоев. При этом в первых, тонкослойных, конверторах поглощается преимущественно наиболее мягкая часть излучения (с меньшими энергиями). В последних конверторах поглощаются наиболее жесткие компоненты излучения. Соответственно, здесь устанавливают конвертор, рассчитанный на максимальные пробеги фотоэлектронов.

В зависимости от решаемой задачи измеряют сигналы от каждого поглощенного фотона или сигналы, усредненные по времени. Как правило, импульсная схема позволяет получить более высокую чувствительность, так как в этом случае с помощью схемы совпадения может быть снижена скорость счета фоновых импульсов, а в некоторых вариантах конструкции также за счет более крутой поляризованной кривой. Одновременно здесь может быть получена (из распределения амплитуд) информация о спектральной зависимости поляризации.

При измерении азимутальной асимметрии распределения амплитуд сигналов конвертора обычно используют один из двух методов: устанавливают несколько конверторов, развернутых под различными азимутальными углами (например, 60, 90o); устанавливают конвертор на поворотном или вращающемся приводе (вращаться может также блок датчиков прибора целиком). Последний метод позволяет также надежно исключить систематические ошибки при измерении поляризации, связанные с возможным неравенством эффективностей отдельных конверторов.

При необходимости исследовать также пространственное распределение поляризации в источнике излучения его рентгеновское изображение, полученное с помощью внешней телескопической системы, фокусируют на конвертор и регистрируют по отдельности сигналы от слоев конвертора (могут использоваться также рентгено-оптические системы с кодированной маской, модуляционные коллиматоры различных типов и др.). При использовании описываемого полупроводникового конвертора непосредственно может быть зарегистрирована только одномерная свертка изображения источника.

Устройство работает следующим образом. Анализируемый рентгеновский поток h направляют на передний торец конвертора I, в направлении вдоль слоев. При поглощении рентгеновского фотона в слое полупроводника 4 генерируется энергичный фотоэлектрон, вдоль трека которого происходит ионизация вещества с образованием свободных зарядов. Под действием разности потенциалов, приложенной к металлическим слоям 5 на границе полупроводника, заряды собираются на электродах, поступают на блок регистрации и обработки данных 2. Составляются величины сигналов, полученных при азимутальных разворотах конвертора или от нескольких конверторов, установленных под различными азимутальными углами, определяется величина и направление азимутальной асимметрии и по ней, используя также калибровочные данные, вычисляют степень поляризации и позиционный угол плоскости поляризации.

Пример. Ламинарный полупроводниковый конвертор, состоящий из 2500 элементов с размерами 10х1 мм2 (поперечное сечение пакета, составленного из этих элементов 10х10 мм2). Каждый элемент представляет собой слой фоточувствительного полупроводника активированного сернистого кадмия Сds(Cu,Cl) толщиной 2 мкм, нанесенный на подложку алюминиевую фольгу толщиной 2 мкм. При энергии пучка рентгеновских фотонов с Е 20 кэВ расчетная величина фактора поляризационной модуляции М составила 50% (при данной энергии указанная выше толщина слоев соответствует 0,5lo длины пробега фотоэлектронов).

Как показывает приведенный пример, предлагаемое устройство существенно превосходит прототип по величине фактора поляризационной модуляции М и, естественно, также по эффективности и поляризационной чувствительности (в устройстве может эффективно использоваться до 40% энергии падающего рентгеновского излучения, по сравнению с долями процента в прототипе).

Формула изобретения

Рентгеновский поляриметр, включающий соединенные между собой конвертор и блок регистрации и обработки данных, отличающийся тем, что конвертор выполнен в виде чередующихся слоев полупроводника и металла, образующих набор фотоэлементов металл полупроводник металл, с толщиной каждого слоя порядка длины пробега первичных фотоэлектронов, генерируемых в полупроводнике при поглощении рентгеновских фотонов, распространяющихся вдоль слоев конвертора, причем эффективный атомный номер Zэфф материала полупроводника больше атомного номера Z металла, а размер конвертора в направлении по оси рентгеновского пучка соответствует толще для рентгеновского излучения порядка и больше единицы.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к ускорительной технике и может быть использовано для измерения поляризации пучков ионов водорода, получаемых из источников поляризованных частиц

Изобретение относится к измерительной технике и может быть исполЧ»зо-2

Изобретение относится к физике элементарных частиц, точнее, к нейтронным исследованиям

Изобретение относится к методам исследования структуры весчества, более конкретно - к способам определения пространственной структуры крупномасштабных неоднородностей надатом- Hbtx размеров конденсированного состояния вещества

Изобретение относится к ядерным методам контроля физических па раметров пучков фотонов.и может быть использовано при проведении поляризационных экспериментов с пучками по ляризованных квазимонохроматических фотонов

Изобретение относится к ядерным методам контроля физических.параметров пучков фотонов и может быть использовано при рабх5те с пучками нов

Изобретение относится к области экспериментальной ядерной физики

Изобретение относится к физике электромагнитного излучения и может найти применение для измерения рентгеновского излучения при исследованиях высокотемпературной плазмы, взаимодействии высокоэнергичных частиц с веществом, в медицине, в рентгеноструктурном анализе, в радиографии, рентгеновской микроскопии, производстве микросхем

Изобретение относится к технике измерения поляризации рентгеновского излучения "классического" диапазона энергий: 10-100 кэВ и может быть использовано при диагностике горячей, в том числе термоядерной, неравновесной и неоднородной плазмы в лабораторных, натурных и астрофизических экспериментах
Наверх