Способ электрообработки жидкости

 

Изобретение относится к области направленного изменения физико-химических и биологических свойств воды и предназначено для использования в технике, сельском хозяйстве, медицине и т.д. Способ электрообработки жидкости включает обработку ее в электролизере из диэлектрического материала, один из электродов помещен снаружи, под днищем электролизера, а другой - внутри электролизера над поверхностью жидкости в паровоздушной среде. 1 ил., 1 табл.

Изобретение относится к области направленного изменения физико-химических и биологических свойств природной и технологической воды и предназначено для использования в технике, сельском хозяйстве, медицине и т.д.

Известен способ обработки воды импульсным электрическим током и разрядом малой мощности. Однако в данном способе вследствие приэлектродных процессов вода обогащается ионами, способными оказывать нежелательное биологическое воздействие. Происходит эрозия рабочих поверхностей электродов, велика энергоемкость реализации данного способа, т.к. в разряде осуществляется электролиз с большой плотностью тока порядка единиц А/м2 и более.

Более близким по технической сущности к предлагаемому решению является способ электрообработки воды, заключающийся в том, что на воду действуют постоянным электрическим током в электролизере с разнополярными электродами, разделенными между собой полупроницаемой перегородкой. Однако в данном способе велики энергозатраты из-за электролиза, происходит загрязнение воды ионами при растворении электродов, имеющих непосредственный контакт с жидкостью.

Целью настоящего изобретения является уменьшение энергозатрат, исключение попадания в воду нежелательных примесей при электрообработке в системе разнополярных электродов.

Указанная цель достигается тем, что в способе обработки постоянным электрическим током при действии на жидкость системы разнополярных электродов, разделенных перегородкой, электрообработку проводят разнополярными электродами, не имеющими прямого контакта с жидкостью в диэлектрическом электролизере, в котором в качестве перегородки используется его днище. При этом один электрод расположен под днищем электролизера, а верхний внутри электролизера, над поверхностью жидкости в паровоздушной среде.

Использование диэлектрических прослоек исключает прямой контакт обоих электродов с обрабатываемой жидкостью, что исключает процессы ионного обмена электродов с жидкостью. Последнее исключает попадание нежелательных ионов в жидкость и снижает затраты электрической энергии вследствие резкого падения плотности тока в межэлектродном пространстве. При этом электропроводность межэлектродного пространства определяется проводимостью диэлектрических сред днища электролизера и паровоздушной прослойки, включаемых в схему электрообработки последовательно. Обе эти проводимости на 5-7 порядков ниже аналогичного параметра воды. В предлагаемом способе плотность тока зависит от напряжения на электродах и имеет порядок 10-4 А/м2 при напряжении на электродах U 10 кВ.

Увеличение производительности при электрообработке при использовании одного источника высокого напряжения достигается варьированием полярностью верхнего и нижнего электродов, при этом можно использовать требуемое количество электролизеров, в каждом из которых создается жидкость того или другого (католитная, анолитная).

При действии на жидкость электрическим полем высокой напряженности она поляризуется, может изменяться ее электропроводность и вязкость h. Связь последних описывается законом Вальдена-Писаржевского ch= const. Кроме того, меняется биологическая активность жидкости: такая вода увеличивает энергию прорастания семян, рост растений.

На чертеже представлена принципиальная схема устройства для реализации предлагаемого способа.

Устройство содержит электролизер 1, выполненный из диэлектрического материала, с жидкостью 2. Снизу, под днищем электролизера, установлен электрод 3. Сверху в паровоздушной среде 4 установлен другой электрод 5. Электроды 3 и 5 подсоединяются к соответствующим полюсам источника высокого напряжения 6.

Настоящее устройство представляет спаренную систему, позволяющую получать жидкость анолитного типа, когда "+" электрод находится в паровоздушной среде, и католитного типа, когда катод находится в этой среде, т.е. сверху.

Пример. В электролизер, выполненный из химического стекла ТХС-1, с толщиной днища 4 мм заливалась слоем толщиной 15 мм дистиллированная вода и раствор KCl концентрацией 0,01 моль/л. Верхний электрод располагался в насыщенной паровоздушной среде при расстоянии 5 мм от поверхности жидкости. Напряжение на электроды U 9 кВ подавалось от источника УПУ-10 и измерялось киловольтметром С-196. Установлено при обработке уменьшение pН в пределах от 6,8 до 6,4, электропроводность раствора растет с увеличением времени электрообработки в пределах 15-20% от исходного. Установлено, что вода практически восстанавливает исходные параметры спустя 1,5-2 ч после электрообработки.

Электрообработанная вода обладает повышенной биологической активностью. В таблице показано среднестатистическое относительное (%) изменение массы луковиц при их развитии в анолитной, католитной воде и в нейтральной водопроводной воде, не проходившей обработки. Лук активно обрабатывался (поливался) соответствующей водой (см. таблицу).

Таким образом, наибольшей биологической активностью обладает вода, которая обрабатывалась анодным электродом в паровоздушной среде (анолит).

Формула изобретения

Способ электрообработки жидкости, включающий обработку ее постоянным электрическим током в электролизере с разнополярными электродами, разделенными перегородкой, отличающийся тем, что обработку жидкости ведут в электролизере из диэлектрического материала, а в качестве перегородки используют днище электролизера, при этом один из электродов помещен снаружи под днищем электролизера, а другой внутри электролизера над поверхностью жидкости в паровоздушной среде.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к устройствам для электрохимической обработки природных, оборотных и сточных вод при их очистке от дисперсированных, эмульгированных и растворенных примесей

Изобретение относится к области очистки природных, оборотных и сточных вод

Изобретение относится к способам получения обессоленной воды путем пропускания ее через ионообменные катионитные и анионитные фильтры, в частности, при очистке воды промышленных стоков от вредных примесей и для выделениях химических веществ из растворов

Изобретение относится к технике очистки сточных вод с помощью ионизирующего излучения

Изобретение относится к технике очистки сточных вод ионизирующим излучением

Изобретение относится к способу очистки сточных вод заводов пивоварения и производства безалкогольных напитков

Изобретение относится к способам очистки сульфатсодержащих сточных вод и может быть использовано для очистки рудничных вод, сточных вод обогатительных фабрик, химических производств, производств минеральных удобрений, поверхностного стока с промплощадок

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх