Сильноточный мощный многолучевой свч-прибор о-типа

 

Использование: в многолучевых сильноточных СВЧ приборах с электронными лучами, объединенными в несколько групп для повышения мощности за счет улучшения токопрохождения. Сущность изобретения: магнитные экраны, позволяющие уменьшить величину поперечной составляющей магнитного поля, выполнены в виде колец из магнитомягкого материала отдельно для каждой группы лучей, в соответствии с формулой изобретения. При этом значительно уменьшается взаимное влияние друг на друга отдельных групп лучей, что и улучшает токопрохождение. 2 ил., 1 табл.

Изобретение относится к электронной технике, а более конкретно к многолучевым приборам СВЧ О-типа (клистрон, ЛБВ и т.д.).

Известно, что для уменьшения радиальной составляющей магнитного поля в многолучевых клистронах, у которых пролетные каналы сформированы в одну группу и расположены на нескольких концентрических окружностях, применяются "выпрямители магнитного поля" [1] Они представляют собой тонкие диски из магнитомягкого материала с отверстиями для прохождения электронных лучей, расположенные перпендикулярно оси прибора.

Однако уменьшить поперечную составляющую магнитного поля, возникающую за счет взаимодействия сильноточных электронных лучей с помощью дисков из магнитомягкого материала, общих для всех лучей, если лучи сформированы в несколько групп, не удается. Как показали результаты измерений на макете магнитной фокусирующей системы прибора, в которой электронные лучи имитировались проводниками с током, равным току луча, при включении тока величина поперечной составляющей даже увеличивается (таблица).

Целью изобретения является повышение мощности прибора за счет увеличения токопрохождения, что достигается экранированием магнитных полей, создаваемых отдельными сильноточными лучами.

Поставленная цель достигается тем, что в резонаторный блок для каждой группы лучей введена последовательность несоприкасающихся экранов, выполненных из магнитомягкого материала в виде колец с отверстиями для прохождения электронных лучей, причем толщина колец t1, расстояние между ними L, диаметр отверстий d, внешний диаметр колец D1 и внутренний диаметр колец D2 связаны соотношениями: где k отношение величины поперечной составляющей магнитного поля взаимодействия до введения экранов к аналогичной величине после введения экранов.

На фиг. 1 показан внешний вид предложенного прибора. Прибор содержит анод 1, катод 2, электронный луч 3, фокусирующий электрод 4, резонаторный блок 5, катушку соленоида 6, коллекторный полюсный наконечник 7, коллектор 8, экранирующие кольца из магнитомягкого материала 9.

На фиг. 2 приведены результаты измерений как продольной составляющей индукции магнитного поля, полученной на макете магнитной системы с введенной последовательностью экранов (а), так и поперечной составляющей индукции магнитного поля (б), измеренной до (кривая 10) и после (кривая 11) введения последовательности экранов.

Устройство работает следующим образом. При подаче ускоряющего напряжения на анод 1, являющийся одновременно магнитным полюсным наконечником, с каждого из катодов 2 электростатическое поле формирует сходящиеся электронные лучи 3. Управление парциальными лучами осуществляется либо по аноду 1, либо по фокусирующему электроду 4. Затем лучи фокусируются в пролетных каналах резонаторного блока 5 с помощью магнитной фокусирующей системы, состоящей из источника магнитного поля (катушек соленоида или постоянных магнитов 6) и полюсных наконечников 1, 7. После этого лучи поступают в коллектор 8. Для экранировки магнитных полей, создаваемых отдельными сильноточными лучами 3 в резонаторном блоке 5 для каждой группы лучей перпендикулярно оси прибора установлена последовательность несоприкасающихся экранов из магнитомягкого материала 9. На фиг.2б показаны результаты измерений поперечной составляющей индукции магнитного поля, полученные на макете магнитной системы прибора, в которой для имитации электронных лучей в пролетных каналах были расположены проводники с током, равным току парциального электронного луча. Как видно из фиг. 2, введенная последовательность несоприкасающихся экранов значительно уменьшает величину поперечного магнитного поля, которое создают сильноточные электронные лучи. Из фиг. 2б следует, что до введения экранов величина поперечной составляющей равна примерно 14 Гс, а после их введения она уменьшается более чем в 3 раза. Этот эффект можно объяснить следующим образом. Известно (2), что коэффициент экранирования S для длинного экрана равен (1) где rэ радиус экрана; t толщина экрана; магнитная проницаемость материала экрана (равная примерно 100 для стальных экранов).

Для уменьшения влияния магнитных полей сильноточных лучей друг на друга можно применить экраны в виде последовательности колец толщиной t, установленных вдоль оси каждого пролетного канала. При близком расположении каналов соседние кольца, лежащие в плоскостях, перпендикулярных осям каналов, могут быть объединены. Тогда вдоль оси прибора для каждой группы лучей будет расположена последовательность колец с внешним диаметром D1, внутренним диаметром D2, толщиной t1 и отверстиями для электронных лучей, равными диаметру пролетного канала d. Поскольку влияние экрана сказывается на длине примерно равной диаметру экрана, то расстояние между кольцами не должно превышать двух диаметров D.

Очевидно, что при уменьшении длины экрана его экранирующие свойства ухудшаются. Выполненные экспериментальные исследования показали, что при длине экрана t1 коэффициент экранирования можно вычислять по формуле где .

Подставляя в это выражение значения , t2 и полагая , получаем следующее выражение: где k отношение величины поперечной составляющей магнитного поля взаимодействия до введения экранов к аналогичной величине после введения экранов.

В настоящее время на основе выполненных исследований изготовлен прибор и проведены его испытания. Применение предполагаемого изобретения позволило ликвидировать наблюдающееся ранее оплавление пролетных труб в конце резонаторного блока.

Формула изобретения

Сильноточный мощный многолучевой СВЧ-прибор 0-типа, содержащий электронно-оптическую систему, формирующую электронные лучи, объединенные в несколько групп, и резонаторный блок, отличающийся тем, что, с целью повышения мощности прибора за счет увеличения токопрохождения, в резонаторный блок отдельно для каждой группы электронных лучей введена последовательность несоприкасающихся между собой магнитных экранов, выполненных из магнитомягкого материала в виде колец с внешним диаметром D1, м, внутренним диаметром D2, м, толщиной t1, м, с отверстиями диаметром d, м, для про- хождения электронных лучей, при этом должны быть соблюдены следующие соотношения: L 2D1,

где L расстояние между кольцами, м,
K коэффициент экранирования поперечной составляющей магнитного поля.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к электронной технике, в частности к конструированию и технологии изготовления электровакуумных приборов СВЧ, а именно клистронов

Изобретение относится к электровакуумным приборам СВЧ, а именно к усилительным клистронам, работающим в двух полосах частот за счет использования двух видов колебаний в резонаторной системе

Изобретение относится к электронной технике, в частности к электронным приборам, а именно - к многорезонаторным усилительным клистронам, предназначенным для использования в радиорелейных, тропосферных и спутниковых станциях связи, в которых осуществляется одновременная передача двух и более высокочастотных сигналов, расположенных в одном рабочем диапазоне частот клистрона

Изобретение относится к электронной технике, конструкциям приборов СВЧ клистронного типа и может быть применено при создании усилительных клистронов

Изобретение относится к электровакуумным СВЧ-приборам типа О, в частности к приборам с фильтровыми системами

Изобретение относится к электронной технике, в частности к многолучевым СВЧ-приборам 0-типа Целью изобретения является повышение мощности прибора за счет уменьшения токооседания в резонаторной системе и на коллекторном полюсном наконечнике в динамическом режиме работы Поставленная цель достигается за счет того, что при взаимном положении коллектора 6 резонаторной системы 4 и магнитной системы 7 в соответствии с формулой изобретения достигается хорошее токопрохождение в резонаторной системе

Изобретение относится к электронной технике, в частности к конструкции коллектора многолучевого электронного прибора, например клистрона

Изобретение относится к фокусирующим магнитным системам для электронных СВЧ-приборов О-типа

Изобретение относится к радиотехнике

Изобретение относится к сверхвысокочастотной (СВЧ) электронике

Изобретение относится к электротехнике

Изобретение относится к области СВЧ-электроники, в частности к конструкциям коллекторных систем электровакуумных приборов О-типа

Изобретение относится к магнитным системам для получения однородного постоянного магнитного поля, в частности малогабаритным магнитным системам, используемым в устройствах и приборах ЯМР и ЭПР-спектроскопии
Наверх