Модель для исследования гидродинамического воздействия на преграду

 

Изобретение относится к модели гидродинамических сооружений, например к модели поперечной запани, устанавливаемых на реках для задержания сплавного леса. Целью изобретения является упрощение технологии изготовления модели. Модель поперечной запани содержит вертикальный щит 1 с горизонтальной 2 и вертикальной 3 направляющими с ползунами 4, 5 и блоками 6, 7, гибкий элемент 8 с имитаторами гидродинамической нагрузки по выполняемой ими функции 9, гибкие связи 10 и 11, штырь 12, кольца 13 и 14, прочные нитки 15 и 16, а также грузики 17 и 18 и при установке на полущит 1 ставят на стойках 19, на которой закреплена миллиметровка с двумя линиями 21 и 22. 1 п. ф-лы, 4 ил.

Изобретение относится к модели гидротехнических сооружений, например к моделям поперечной запани, которая устанавливается на реках для задержания сплавного леса.

При физическом моделировании используют бассейны, аэродинамические трубы, гидролотки. Все они представляют собой капитальные сооружения.

Модель морской платформы, выбранная в качестве прототипа, содержит основание, гибкий стержень (элемент), один конец которого расположен в фиксированной точке основания, и имитаторы гидродинамической нагрузки присоединены к гибкому стержню с интервалом, исключающим их взаимное касание (авт. св. СССР N 987008, кл. Е 02 В 1/02, 1981). Гидродинамическая нагрузка выполнена в виде пространственных призм или цилиндров.

Для изготовления модели надо подобрать гибкий стержень соответствующей жесткости и проверить его фактический прогиб отдельно и в сборе с секциями. Следует, заранее рассчитав гидродинамические характеристики (инерционные и скоростные) секций сопротивления, изготовить последние и проконтролировать результаты измерения волновой нагрузки в опыте. Технология изготовления модели достаточно сложная. Целью изобретения является упрощение технологии изготовления модели. Поставленная цель достигается тем, что модель поперечной запани, содержащая основание, гибкий элемент, один конец которого расположен в фиксированной точке основания, и имитаторы гидродинамической нагрузки по выполняемой ими функции присоединены к гибкому элементу с интервалом, исключающим их взаимное касание, снабжена горизонтальной и вертикальной направляющими с ползунами, двумя гибкими связями, двумя кольцами и имитатором натяжения гибкими элементами, причем основание выполнено в виде вертикального прямоугольного щита, на верхней и боковой сторонах которого установлены горизонтальная и вертикальная направляющие с ползунами, гибкий элемент в виде канатика, имитаторы гидродинамической нагрузки в виде прямых металлических стержней, а имитатор натяжения гибкого элемента в виде грузиков, подвешенных на свободных концах взаимноперпендикулярных прочных нитках, каждая из которых переброшена через установленный на ползуне горизонтальной или вертикальной направляющей блок и свободно присоединена к первому кольцу, при этом гибкий элемент одним своим концом через первую гибкую связь подвешен к первому кольцу, а другим концом через вторую гибкую связь - ко второму кольцу, свободно надетому на штырь, расположенному в фиксированной точке основания на основной стороне щита, противоположной стороне с вертикальной направляющей.

Использование в предлагаемом изобретении простых элементов (грузики, прочные нитки, металлические стержни, щит с направляющими, ползунами блоками и т. п. ) упрощает технологию изготовления поперечной запани. Кроме того, изобретение позволяет упростить методику испытаний, уменьшает трудоемкость, стоимость изготовления и проведения испытаний без привлечения капитального лабораторного оборудования (аэродинамические трубы, опытовые бассейны и т. п.).

На фиг. 1 представлена модель конкретной запани, общий вид; на фиг. 2 - канатик с прямыми металлическими стержнями; на фиг. 3 схема сил, приложенных к поперечной запани; на фиг. 4 тоже, приложенных к модели поперечной запани. Модель поперечной запани содержит вертикальный прямоугольный щит 17, с горизонтальной 2 и вертикальной 3 направляющими с ползунами 4, 5 и блоками 6, 7, гибкий элемент 8, имитаторы гидродинамической нагрузки по выполняемой ими функции 9, гибкие связи 10 и 11, штырь 12, кольца 13 и 14, прочные нитки 15 и 16; грузики 17 и 18. Щит 1 изготовлен из легкого материала (например, дерева), подвешен на стене или установлен на полу при помощи стоек 19, на котором помещена миллиметровка в двумя линиями 20 и 21. Направляющие 2 и 3, ползуны 4 и 5, блоки 6 и 7 могут быть выполнены из любого материала: металла, дерева, оргстекла. Ползуны 4 и 5 имеют стопор (на фиг. 1 не обозначен), обеспечивающий фиксированное положение ползуна на направляющей.

Гибкий элемент 3 выполнен в виде канатика (синтетического, пенькового и т. п.), своими концами присоединенного к петлям гибких связей 10 и 11. Последние изготовлены из прочных ниток (например, суровых). Связи 10 и 11 другими своими концами при помощи петель присоединены к кольцам 12 и 13. Кольцо 12 надето на штырь 13. К кольцу 13 посредством петель присоединены прочные нитки (например, суровые) 15 и 16. Нитка 15 переброшена через блок 6 и имеет на своем свободном конце грузик 17, а нитка 16 через блок 7 и имеет грузик 18.

Имитаторы гидродинамической нагрузки на выполняемой функции 9 выполнены в виде прямых металлических стержней, присоединенных к канатику 8 при помощи отрезков проволоки 20, приваренных или накрученных на концах стержня (фиг. 2).

Работу покажем на примере определения параметров запани, которой необходимо перекрыть реку с шириной А. Для запани известны значения погонного сопротивления r и ее длина L.

Прежде чем приступить к работе устанавливают линейный и силовой масштабы моделирования, рассматривая уравнения формы кривой запани: где Х и Y координаты поперечной запани ВОС, находящейся под воздействием течения реки со скоростью V и принимающей под воздействием начального сопротивления r форму кривой (1) с началом координат в точке 0 (весом поперечной запани пренебрегают); Т натяжение вдоль поперечной запани ВОС; r погонное гидродинамическое сопротивление поперечной запани, обтекаемого со скоростью V под углом 90o; х и y координаты металлической цепочки, ВОС, примыкающей в поле ускорения силы тяжести g форму цепной линии с началом координат к точке 0; tx горизонтальная составляющая натяжения цепочки ВОС, образованной прямыми имитаторами гидродинамической нагрузки на выполняемой ими функции 9, подвешенными к канатику 8; погонная масса цепочки ВОС. Из выражений (1) и (2) следует, что форма поперечной запани ВОС подобна форме цепочке ВОС, если выполняются условия (силовой и линейный масштабы): где l и L длина цепочки ВОС и поперечной запани ВОС, m линейный масштаб.

В соответствии с выбранным линейным масштабом m l L и известным значением ширины реки А, погонного сопротивления r поперечной запани собирают цепочку длиной l= L/m, состоящую из "n" стержней 9 имитаторов гидродинамической нагрузки по выполняемой или функции, присоединенных к канатику 8. Масса каждого стержня и соответствующего отрезка канатика . При этом следует, что длина l1 Kd цепочки соответствует длина L1 KD участка запани, а его гидродинамическое сопротивление r соответствует массе g отрезка l1 цепочки.

Собирают узлы модели согласно фиг. 1 и 2. Для этого нитки 10 и 11 выбирают длиной l2 и l3 равных, примерно, 3/4 L. Присоединяют их к цепочке ВОС. Нитку 10 подвешивают при помощи кольца 13 на штырь 12, а нитку 11 к кольцу 14, которое при помощи ниток 15 и 16, переброшенных через блоки 6 и 7 с грузиками 17 и 18 при этом равна, примерно, 1/2 a массы цепочки ВОС. Для удобства работы на щите располагают миллиметровку и проводят на ней две вертикальные 21 и 22 параллельные линии на расстоянии друг от друга а=А/m, причем линия 21 нанесена на расстоянии например, 1/2 а от штыря 12.

Процесс моделирования состоит в том, чтобы путем изменения: длин ниток 10 и 11; расположения штыря 12 по отношению к линии 20; величин масс грузиков 17 и 18; положения на направляющих 2 и 3 ползунов 4 и 5 с блоками 6 и 7; обеспечить условия, при которых нитка 15 расположится вертикально, а 16 горизонтально;
штырь 12 и кольцо 14 будут на одном уровне;
концы b и с цепочки ВОС расположатся соответственно на линиях 20 и 21.

В этом случае:
форма цепочки ВОС будет подобна форме поперечной запани ВОС;
согласно (3) сила , масса грузиков 17 и 18;
направления ниток 10 и 11 будет аналогично направлению лежней ЕВ и Е1C, а длина последних L2 ml2 и L3 ml3;
На основании полученных данных выбирают прочностные характеристики лежня (диаметр, разрывное усилие и т. п.) расположение подвижных соединителей, анкеров, кнехтов и т. п.

При помощи модели оперативно решают различные задачи. Например, определяют характеристики несимметричной поперечной запани при заданных значениях L, r и А. В этом случае выше указанным способом надо вписать цепочку ВОС в параллельные прямые 20 и 21. Но может оказаться, что длинные цепочки (из-за рельефа берега) не хватает. Тогда следует длину увеличить и полученная длина l позволит определить длину L запани.


Формула изобретения

Модель для исследования гидродинамического воздействия на преграду, преимущественно на поперечную речную запань, содержащая основание, гибкий элемент, один конец которого закреплен к основанию, и имитаторы гидродинамической нагрузки, прикрепленные к гибкому элементу на расстояниях друг от друга, отличающаяся тем, что она снабжена двумя ползунами с блоками и фиксаторами, двумя гибкими связями с кольцами на одном конце, прикрепленными вторыми концами к концам гибкого элемента, и имитатором натяжения гибкого элемента, выполненным в виде двух грузиков, подвешенных на нитях, а основание выполнено в виде вертикального прямоугольного щита с горизонтальной и вертикальной направляющими на верхней и боковой кромках, в которых установлены ползуны, причем гибкий элемент выполнен в виде канатика, имитаторы гидродинамической нагрузки в виде металлических стержней, кольцо одной гибкой связи закреплено на противоположной боковой направляющей стороне щита неподвижно посредством штыря, а к концу другой гибкой связи присоединены концы нитей грузиков, перекинутых через блоки ползунов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к стендам для; испытания моделей гидротехнических сооружений

Изобретение относится к гидротехническому строительству и может быть использовано при исследовании ледовых нагрузок на гидротехнические сооружения

Изобретение относится к гидротехническому строительству и может быть использовано для определения свойств грунтов

Изобретение относится к гидротехнике и может быть использовано для модельных исследований сооружений высоконапорных гидроэлектростанций

Изобретение относится к гидротехнике и предназначено для использования в волновых лотках при моделировании воздействия волн на береговую зону

Изобретение относится к области гидротехнических сооружений и может быть использовано для неразрушающего инженерно-сейсмологического обследования физического состояния основания и тела плотины гидротехнических сооружений посредством измерения микроколебаний объекта под воздействием микросейсмического фона естественного и техногенного происхождения, в том числе полимонохроматического вибрационного излучения функционирующих гидроагрегатов ГЭС или излучения управляемого вибрационного источника

Изобретение относится к области гидротехнических сооружений и может быть использовано для определения динамических и упругих характеристик основания и тела плотины гидроэлектростанции путем неразрушающего инженерно-сейсмологического обследования физического состояния основания и тела плотины гидротехнических сооружений посредством измерения колебаний объекта под воздействием импульсов ударного типа, возникающих при запуске гидроагрегатов

Изобретение относится к области проектирования и строительства

Изобретение относится к гидротехническому строительству, в частности к лесо-судопропускным сооружениям. Заявленное устройство включает судовозную камеру, перемещающуюся по наклонным рельсовым путям, формирователь временных сигналов, в состав которого входят кварцевый генератор, делитель частоты, счетчик импульсов с регулируемым коэффициентом пересчета, схема управления счетчиком, формирователь сигнала «Конец операции», клавиша «Ускорение», формирователь сигналов ускорения, усилитель мощности сигналов ускорения, реле «Ускорение», клавиша «Торможение», формирователь сигналов торможения, усилитель мощности сигналов торможения, реле «Торможение». Выход кварцевого генератора подключен на вход делителя частоты. Выход делителя частоты подключен на вход счетчика импульсов с регулируемым коэффициентом пересчета. Выход схемы управления счетчиком подключен на вход счетчика импульсов с регулируемым коэффициентом пересчета. Выход счетчика импульсов с регулируемым коэффициентом пересчета подключен на вход формирователя сигнала «Конец операции». Клавиша «Ускорение» подключена на вход формирователя сигналов ускорения. Выходы формирователя сигналов ускорения подключены на вход счетчика импульсов с регулируемым коэффициентом пересчета и на вход усилителя мощности сигналов ускорения. Выход усилителя мощности сигналов ускорения подключен на вход реле «Ускорение». Клавиша «Торможения» подключена на вход формирователя сигналов торможения. Выходы формирователя сигналов торможения подключены на вход счетчика импульсов с регулируемым коэффициентом пересчета и на вход усилителя мощности сигналов торможения. Выход усилителя мощности сигналов торможения подключен на вход реле «Торможение». Выходы реле «Ускорение» и реле «Торможение» подключены к исполнительным механизмам модели транспортного наклонного судоподъемника. Выходы формирователя сигнала «Конец операции» подключены на входы формирователя сигнала ускорения и на вход формирователя сигнала торможения. Изобретение позволяет в полном объеме проводить экспериментальные исследования нестационарных процессов, возникающих при неравномерных режимах работы судовозной камеры наклонного судоподъемника с поперечной компоновкой при транспортировке судов и плотов с возможностью изменения уклона рельсовых путей. 4 ил.
Наверх