Способ очистки сточных вод от эпихлоргидрина и продуктов его превращения

 

Изобретение относится к технологии очистки сточных вод химических производств, в частности глубокой очистки сточных вод, содержащих эпихлоргидрин (ЭХГ) и продукты его превращения, образующиеся как при производстве, так и при использовании в синтезе. Задачей изобретения является создание универсального способа очистки сточных вод различных производств, использующих ЭХГ и имеющих различный состав, при оптимальном расходе щелочи, необходимой для гидролиза хлорорганических соединений, и с повышенной производительностью. Указанная задача решается тем, что очистку сточных вод от эпихлоpгидрина и продуктов его превращения осуществляют путем добавления к ним щелочного агента с последующим нагреванием и выдержкой. К сточным водам добавляют щелочной агент с избытком 15-50% от требуемого по стехиометрии для полного гидролиза органически связанного хлора, после чего реакционную массу выдерживают при температуре 78-105oC с воздухом сконденсированных паров. 1 табл.

Изобретение относится к технологии очистки сточных вод химических производств, в частности глубокой очистки сточных вод, содержащих эпихлоргидрин (ЭХП) и продукты его превращения, образующиеся как при его производстве, так и при использовании в синтезе.

ЭХГ высокотоксичное соединение. ПДК эпихлоргидрина в водоемах составляет 0,01 мг/л (110-6%). Следует учесть, что эпихлоргидрин очень реакционноспособное соединение и в водных растворах подвергается превращениям с образованием таких хлорорганических соединений, как монохлоргидрин глицерина (МХГ) и, в присутствии хлоридов, дихлоргидрин глицерина (ДХГ). Оба соединения токсичны: ПДК в воде водоемов санитарно-бытового водопользования МХГ 0,7 мг/л (710-5%); ДХГ - 1 мг/л (110-4%).

При ректификации оборотного эпихлоргидрина также образуются хлорорганические отходы, которые наряду с ЭХГ содержат МХГ, ДХГ и различные высококипящие продукты конденсации эпихлоргидрина. Таким образом, предусмотреть точный состав сточных вод производств, связанных с использованием эпихлоргидрина, особенно включающих его регенерацию, практически невозможно. В связи с этим их обезвреживание от ЭХГ и продуктов его превращения является сложной задачей.

Известен способ двухступенчатой биоочистки сточных вод производства эпоксидных смол [1] содержащих до 300 мг/л (0,03 мас.) ЭХГ. На первой стадии обработку ведут 10 часов в аэротенках микроорганизмами, адаптированными к высоким концентрациям ЭХГ. Концентрация ЭХГ после первой ступени снижается до 100 мг/л. На второй ступени используются аэротенки с обычным активным илом. Эффективность очистки по ЭХГ составляет 100% Однако способ малопроизводителен, рассчитан только на определенный состав отходов и низкое содержание ЭХГ в них.

Наиболее надежным способом очистки таких сточных вод является гидролиз хлорорганических соединений в щелочной среде: При этом высокотоксичные хлорорганические соединения (ЭХГ, МХГ и ДХГ) превращаются в безвредный глицерин.

После разрушения токсичных соединений сточные воды могут быть разбавлены и сброшены в канализацию или перерабатываться с выделением хлорида натрия и глицерина.

Известен способ очистки сточных вод производства эпоксидных смол, согласно которому сточные воды предварительно обрабатывают щелочным агентом (NaOH, Na2CO3) до рН 8-13 (предпочтительно 12), после чего реакционную массу нагревают до 60-90oC и отгоняют легколетучие компоненты. Затем продолжают нагревание до 80-120oC, предпочтительно до 110oC для щелочного гидролиза оставшихся компонентов [2] Недостатком способа является загрязнение дистиллята эпихлоргидрином, образующим легкокипящий азеотроп с водой (температура кипения 88oC), см. пример N 1.

Другим недостатком приведенного способа является применение при выборе режима обезвреживания показателя рН. Известно, что водородный показатель очень мало изменяется по величине при значительных изменениях концентрации щелочи, в особенности в сильнощелочных средах (при рН > 12). Это обстоятельство затрудняет оптимальную загрузку щелочи.

Кроме того, добавление щелочи в сточные воды без учета их состава в одних случаях приведет к ее неоправданному перерасходу, а в других не обеспечит требуемую очистку. Так, рН 13 достигается в водных средах уже при концентрации NaOH 0,5% что по расчету позволяет очистить сточные воды, содержащие не более 0,44% органически связанного хлора (1,1% ЭХГ).

Однако в практике производств эпоксидных смол известны и более загрязненные сточные воды. Например, сточные воды от расслаивания отгоняемого азеотропа ЭХГ-вода содержат 6,5% ЭХГ (2,5% органически связанного хлора). А при совместном хранении расслоившегося отгона происходит гидратация ЭХГ в водной фазе с образованием ионохлорида глицерина, но концентрация эпихлоргидрина при этом не снижается за счет насыщения из органической фазы, и концентрация органически связанного хлора в водном растворе значительно повышается.

Как видно из примера N 2, полная очистка таких сточных вод от продукта гидратации ЭХГ (монохлоргидрина) не достигается даже при рН 13.

При производстве эпоксидных смол в присутствии водорастворимых алифатических спиртов объединенные сточные воды могут содержать более 3% органически связанного хлора (см. примеры N 4, 9), а водный слой от расслаивания отгона изопропанол-ЭХГ-вода 4,2% (см. пример N 8).

Наиболее близким к предлагаемому способу является способ обезвреживания сточных вод производства глицидилового эфира [3] в соответствии с которым к сточным водам добавляют щелочь до рН 12 и выдерживают при 40oC в течение 12 часов. После обработки вредных веществ в растворе не обнаружено.

В водных средах рН 12 может достигаться уже при концентрации щелочи 0,01 М (0,4% NaOH).

Расчет по стехиометрии уравнения (1) показывает, что в данном случае можно обезвреживать только сточные воды, содержащие менее 0,05% органически связанного хлора (или 0,13% эпихлоргидрина).

Способ имеет те же недостатки, что и способ [1] применение понятия "водородный показатель" при расчете необходимого количества щелочи, что может привести как к недостаточно глубокой очистке сточных вод, так и перерасходу щелочи, как указано выше, и возможность применения для очистки сточных вод только определенного состава с относительно небольшим содержанием органически связанного хлора. К недостатку данного способа относится длительная выдержка и, следовательно, низкая производительность.

Задачей данного изобретения является создание универсального способа очистки сточных вод различных производств, использующих ЭХГ и имеющих различный состав, при оптимальном расходе щелочи, необходимой для гидролиза хлорорганических соединений, и с повышенной производительностью.

Предлагается способ очистки сточных вод от ЭХГ и продуктов его превращения, в соответствии с которым к сточным водам добавляют щелочь в 15-50%-ном избытке от количества, требуемого по стехиометрии для полного гидролиза органически связанного хлора, и реакционную массу выдерживают при температуре 78-105oC с возвратом сконденсированных паров.

Ниже приведены примеры осуществления предлагаемого способа (пример N 4 и таблица) и способов, приведенных в аналоге (примеры N 1, 2) и в прототипе (пример N 3).

Содержание органически связанного хлора определяют аналогично методу в ГОСТ 22457-77. Контроль содержания хлорорганических примесей ведут методом ГЖХ с пламенно-ионизационным детектором (ПИД). Предел обнаружения по ЭХГ составляет 110>-4 мас.

Пример N 1 (по условиям способа [1]). К 300 г реакционной массы, содержащей 14,2% хлорида натрия, 5,4% изопропилового спирта и 2,9% ЭХГ, добавляют 6,5 г 42%-ного раствора едкого натрия. При этом достигается рН 12,5. В течение 1 часа реакционную массу перемешивают при комнатной температуре. Содержание ЭХГ в ней и рН не менялись.

После подъема температуры в реакторе до 85oC производится отбор дистиллята при интервале температур в парах 81-90oC. Концентрация ЭХГ в дистилляте 0,56% Пример N 2 (по условиям способа [1]). К 700 мл водной фазы, отделенной после совместного хранения с ЭХГ и содержащей 6,5% ЭХГ и 2,0% МХГ, добавляют 9,6 г 42% -ного раствора NaOH. При этом достигается рН 13,0. После подъема температуры до 100oC концентрация ЭХГ понизилась до 3,2% Через 6 часов в реакционной массе ЭХГ отсутствовал, МХГ- 8,0% ДХГ 0,3% Пример N 3 (по условиям, приведенным в способе [3]). К 700 мл 6%-ного раствора ЭХГ в воде добавляют 6,1 мл 42%-ного раствора NaOH. Достигается рН 12,2. После выдержки при 40oC в течение 12 часов в растворе содержалось 4,3% ЭХГ, 1,8% МХГ, 0,16% ДХГ и 0,11% глицерина.

Пример N 4 (по предлагаемому способу). К 600 г (672 мл) объединенных жидких отходов эпоксиноволачной смолы, содержащим 8,1% хлорида натрия, 15% изопропилового спирта, 3% глицерина, 0,2% толуола, 8,9% эпихлоргидрина, 0,9% дихлоргидрина глицерина и 0,2% монохлоргидрина глицерина, добавляют 78,6 г (54,5 мл) 40,4%-ного раствора NaOH. Общее содержание органически связанного хлора в отходах 3,6% Достигаемое значение рН 13,4, избыток щелочи по отношению к органически связанному хлору 15% Затем реакционную массу доводят до кипения (температура 80oC) и выдерживают с обратным холодильником 80 мин. Эпихлоргидрин, дихлоргидрин глицерина и монохлоргидрин глицерина в обработанных отходах отсутствуют.

Примеры N 5-10 выполнены аналогично примеру 4, и данные сведены в таблицу 1.

Предлагаемый нами способ имеет существенные отличия от прототипа. Дозировку щелочи ведут не по достигаемому значению рН, а исходя из содержания компонентов загрязнения, определяемого по анализу на массовую долю органически связанного хлора. Щелочь берут с избытком 15-50% от расчетного количества.

После добавления щелочи реакционную массу выдерживают при 78-105oC, а не при 40oC, что сокращает время выдержки (см. таблицу 1). При этом в обработанных сточных водах контролируют не только содержание самого эпихлоргидрина, но и всегда сопутствующих ему в водных средах продуктов превращения ЭХГ монохлоргидрина глицерина и дихлоргидрина глицерина. Концентрация контролируемых примесей после очистки составляет менее 110-4 мас. что является пределом обнаружения на столь чувствительном детекторе, как пламенно-ионизационный.

Из приведенных примеров видно, что предложенные нами приемы и последовательность их осуществления обеспечивают глубокую очистку сточных вод от эпихлоргидрина и продуктов его превращения.

После обезвреживания сточные воды могут быть нейтрализованы, разбавлены и сброшены в канализацию или переработаны с выделением хлорида натрия и глицерина известными способами.

Добавление щелочи с избытком менее 15% создает опасность неполного гидролиза хлорорганики из-за допустимой относительной ошибки анализа на содержание органически связанного хлора. Повышение избытка щелочи интенсифицирует процесс, однако дозировка с избытком более 50% нецелесообразна, т.к. не только приводит к перерасходу щелочи, но в дальнейшем потребует больше реагента для нейтрализации.

Выбранный температурный интервал делает возможным применение способа как для стоков, содержащих низкокипящие растворители (этанол, изопропанол) и имеющих температуру кипения азеотропов с водой ниже 100oC (см. примеры N 4,9, таблица 1), так и для концентрированных водно-солевых стоков (см. пример N 6, таблица 1).

Достоинствами предлагаемого способа являются повышенная производительность (за счет сокращения времени выдержки при нагревании по сравнению с прототипом) и универсальность применимость для очистки сточных вод любых производств, использующих эпихлоргидрин как с низким, так и с высоким содержанием самого эпихлоргидрина и продуктов его превращения. При этом щелочь расходуется в оптимальном количестве.

Формула изобретения

Способ очистки сточных вод от эпихлоргидрина и продуктов его превращения путем добавления к ним щелочного агента с последующим нагреванием и выдержкой реакционной массы при повышенной температуре, отличающийся тем, что щелочной агент добавляют с избытком 15-50% от количества, требуемого по стехиометрии для полного гидролиза органически связанного хлора, после чего реакционную массу выдерживают при 78 105oС с возвратом сконденсированных паров.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области биологии и химии, в частности, к способам и устройствам для стерилизации материалов и предметов вообще, а также стерилизации воды и применения ее в медицине

Изобретение относится к способам магнитной обработки водных систем с получением субстрата, используемого для активирования различных биологических процессов

Изобретение относится к очистке природных вод и ориентировано на использование в бактерицидных системах, обеззараживающих питьевую воду ультрафиолетовым облучением

Изобретение относится к очистке и обеззараживанию сточных вод перед сбросом их в открытые водоемы и может быть использован на большинстве промышленных предприятий

Изобретение относится к химической очистке природной воды, а именно к очистке при приготовлении воды в плавательных бассейнах

Изобретение относится к области охраны окружающей среды и, в частности, для очистки сточных вод

Изобретение относится к области получения фильтрующих материалов и использования этих материалов в фильтрах для очистки сточных нефтесодержащих вод нефтяного производства от нефтепродуктов

Изобретение относится к электрохимической обработке водных растворов и получения газов, а именно к электрохимической установке со сборными и распределительными коллекторами анолита и католита, при этом анодные и катодные камеры выполнены в форме параллелограмма, в верхних и нижних углах которого для сообщения соответственно со сборными и распределительными коллекторами устроены каналы, обеспечивающие направление движения электролитов в анодных камерах справа-наверх-влево, а в катодных камерах - слева-наверх-вправо, и выполненные в виде ограниченного пространства, осуществляющего неполное сжатие и расширение потока электролита за счет того, что одна сторона канала представляет собой прямую, являющуюся продолжением боковой стенки камеры до пересечения со сборным или распределительным коллектором в точке прохождения радиуса коллектора R, перпендикулярного этой боковой стенке, вторая сторона канала изготовлена в виде полукруга, соединяющего сборный или распределительный коллектор со второй боковой стенкой камеры в точке пересечения полукруга с радиусом коллектора R, параллельным прямой стороне канала, причем радиус полукруга r и радиус сборного или распределительного коллектора R связаны соотношением R > r > 0

Изобретение относится к обработке воды, а именно к способу обеззараживания воды, основанному на электролизе, при этом обработку исходной воды осуществляют одновременным воздействием на нее в анодных камерах двух двухкамерных электролизеров с катионообменными мембранами атомарного кислорода, угольной кислоты, а также гидратированных ионов пероксида водорода с введением в анодную камеру первого электролизера водного раствора гидрокарбоната натрия с рН = 10,5...11,5, в анодную камеру второго электролизера водного раствора гидрокарбоната натрия с рН = 8,5...9,0, получением после анодной камеры первого электролизера анолита с рН = 3-4, последующей доставкой его в обе камеры второго электролизера и получением после катодной камеры второго электролизера питьевой воды с рН = 7,0-8,5, при этом получаемый во втором электролизере анолит смешивается с исходной водой перед введением в камеры первого электролизера, а католит после первого электролизера отводится из устройства
Наверх