Устройство для бесконтактного неразрушающего контроля материалов

 

Изобретение относится к бесконтактным методам контроля теплофизических характеристик материалов и может быть использовано при производстве изделий электронной техники. Сущность изобретения: устройство состоит из лазера, отражателя, ИК-приемника, собирающей тонкой линзы и длинноволнового оптического фильтра. Отражатель выполнен в форме вытунятого эллипсоида вращения, усеченного в фокусах плоскостями, ортогональными его большой оптической оси, на которой установлена линза. В устройстве угловая апертура линзы, угол обзора ИК-приемника, расстояние от первого фокуса эллипсоида до линзы и расстояние от линзы до второго фокуса эллипсоида связаны с параметрами собирающей линзы общей формулой тонкой линзы. Внутренняя поверхность эллипсоида выполнена шероховатой так, что она диффузионно рассеивает переотраженное коротковолновое излучение лазера и зеркально отражает тепловое излучение от локального разогрева точки образца в спектральном диапазоне ИК-приемника. 1 з. п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, а именно к способам неразрушающего контроля материалов преимущественно в твердотельной микроэлектронике.

Известно устройство для неразрушающего контроля материалов, содержащее источник модулированного излучения и два термодатчика, установленные на образце на некотором расстоянии друг от друга [1] действующее на основе эффекта сдвига фазового угла тепловой поверхности волны, создаваемой модулированным световым пучком, который измеряют термодатчиками на фиксированном расстоянии от светового пятна в зависимости от частоты либо на фиксированной частоте в зависимости от расстояния. По сдвигу фазового угла тепловой волны, который зависит от толщины поверхностного слоя, а также от наличия дефектов в поверхностном слое, определяют толщину поверхностного слоя либо глубину залегания дефектов.

Недостатками данного технического решения являются низкая пространственная разрешающая способность из-за необходимости контакта термодатчиков с поверхностью образца, что ограничивает минимальные размеры объектов, которые могут быть исследованы; низкая температурная разрешающая способность, так как в области контакта термодатчика с образцом тепловая поверхностная волна неизбежно претерпевает искажение; ограниченная область применения, так как распространение тепловой поверхностной волны во все стороны от зондирующего светового пучка, вследствие чего высокая доля тепловой энергии бесполезно рассеивается, требует большой оптической мощности облучения образца и нагрева его до высокой температуры.

Наиболее близким техническим решением (прототипом) изобретения является устройство для определения степени очистки металлической поверхности [2] включающее осветитель, состоящий из лампы накаливания, объектива и плоского зеркала, приемник и отражатель в виде вытянутого эллипсоида вращения, усеченного плоскостями, ортогональными большой оптической оси и проходящими через его фокусы, в одном из которых расположен исследуемый образец, а в другом приемник излучения, на который эллипсоидальной поверхностью концентрируется диффузно отраженное излучение, несущее информацию о качестве очистки поверхности образца.

Плоское зеркало расположено между приемником и образцом на большой оптической оси эллипсоида под углом к ней и служит для подачи от лампы накаливания излучения на образец и вывода из эллипсоида зеркально отраженной от образца составляющей излучения обратно в осветитель.

Внутренняя поверхность эллиптического отражателя полирована и алюминирована.

Недостатками данного технического решения являются перекрывание плоским зеркалом основной составляющей диффузно отраженного от образца излучения (несущего информацию), так как диаграмма направленности диффузно отраженного излучения, а также теплового излучения подчиняется закону косинуса Ламберта, имеет максимальную величину по нормали к поверхности образца, то есть на оптической оси отражателя; ограничение области применения образцами с относительно гладкой поверхностью; невысокая помехозащищенность из-за того, что в конструкции не предусмотрена защита приемника от зеркального излучения, отраженного у образцов с углами разориентации участков поверхности, превышающими угловые размеры плоского зеркала, под какими оно видно из фокуса отражателя, где установлен образец. В этом случае не исключены попадание на образец переотраженного в отражателе зеркального излучения и появление ложного сигнала.

Технической задачей настоящего изобретения является повышение температурной чувствительности и пространственной разрешающей способности, а также повышение помехозащищенности, тем самым расширение области применения.

Поставленная задача достигается тем, что устройство для бесконтактного неразрушающего контроля материалов, содержащее осветитель, оптическую фокусирующую систему в виде вытянутого эллипсоида вращения, усеченного плоскостями, ортогональными его большой оптической оси и проходящими через его фокусы, в первом из которых расположен исследуемый образец, во втором - ИК-приемник, содержит собирающую тонкую линзу и длинноволновой оптический фильтр, установленный перед ИК-приемником, причем собирающая линза установлена на большой оптической оси эллипсоида между оптическим фильтром и первым фокусом эллипсоида так, что ее главная оптическая ось совпадает с большой оптической осью эллипсоида, а апертурный угол линзы, угол обзора ИК-приемника, расстояние от первого фокуса эллипсоида до линзы и расстояние от линзы до второго фокуса эллипсоида связаны с параметрами собирающей линзы общей формулой тонкой линзы, луч осветителя проходит вне апертурного угла линзы, край полосы поглощения длинноволнового оптического фильтра больше длинноволновой границы спектра излучения осветителя, но меньше коротковолновой границы спектральной чувствительности ИК-приемника.

Внутренняя поверхность отражателя выполнена шероховатой, диффузно рассеивающей излучение осветителя и зеркальной в спектральном диапазоне чувствительности ИК-приемника.

Изобретение поясняется чертежами.

На фиг.1 дана оптическая схема устройства, где показаны лазер 1, отражатель 2, выполненный в форме вытянутого эллипсоида вращения, усеченного в фокусах плоскостями, ортогональными его большой оптической оси, отверстие для ввода луча лазера 3, ИК-приемник 4, установленный во втором фокусе эллипсоида, собирающая тонкая линза 5 (в крайнем верхнем положении показана 5'), длинноволновой оптический фильтр 6, установленный непосредственно перед ИК-приемником, образец 7, расположенный в первом фокусе эллипсоида, луч теплового излучения 8, разогретая излучением лазера точка на поверхности образца A, крайняя верхняя точка на отражающей поверхности эллипсоида B, крайняя нижняя точка на отражающей поверхности эллипсоида C, расстояние от первого фокуса эллипсоида до линзы M, расстояние от линзы до второго фокуса эллипсоида N, апертурный угол линзы , линейный угол обзора ИК-приемника q, фокусное расстояние эллипсоида D, малая ось эллипсоида 2b.

На фиг. 2 дана схема концентрации теплового излучения эллипсоидальным отражателем на ИК-приемник. Обозначения аналогичны фиг.1.

Введение в известное устройство собирающей тонкой линзы и расположение ее согласно формулы, а также выполнение отражателя в виде целого вытянутого эллипсоида вращения дают возможность собрать полностью излучение от точечного теплового источника, находящегося в одном фокусе отражателя, на ИК-приемник, установленный в другом фокусе, что приведет к увеличению температурной чувствительности и пространственной разрешающей способности устройства, вследствие чего расширяется его область применения.

Запишем несколько математических соотношений, поясняющих работу устройства.

В эллипсоидальном отражателе луч 8, выйдя из одного фокуса, попадает в другой фокус по большой оптической оси либо отразившись от эллипсоидальной поверхности. При любом конструктивном исполнении эллипсоидального отражателя, собирающего излучение от точечного теплового источника A, находящегося в одном фокусе отражателя, на ИК-приемник, установленный в другом фокусе, имеется "мертвая зона" (заштрихована на фиг.2), излучение в которой теряется, а в силу ламбертовости приемника и источника оно составляет существенную долю полного излучения источника. С целью повышения чувствительности и разрешающей способности устройства в "мертвую зону" введена фокусирующая линза 3 для сбора излучения из "зоны" на ИК-приемник. Параметры линзы, эллипсоида и приемника связаны следующими соотношениями, которые вытекают из законов геометрической оптики (фиг.1): где расстояние между фокусами эллипсоида; n, Do, R1 и R2 показатель преломления, диаметр и радиусы кривизны линзы; fo фокусное расстояние линзы; q линейный угол обзора приемника; b угловая апертура линзы; e эксцентриситет линзы.

Соотношения (1) и (2) справедливы для оптимального устройства, в котором все указанные выше параметры взаимозависимы и достигается максимальный сбор излучения теплового источника на приемник. Угловая апертура линзы b, угол обзора ИК-приемника q, расстояние M от первого фокуса эллипсоида до линзы и расстояние N от линзы до второго фокуса эллипсоида связаны с параметрами собирающей линзы общей формулой тонкой линзы (1). В таком устройстве потоки излучения, преобразуемые отдельно линзой и отражателем, в сумме дают постоянный поток, равный полному потоку, излучаемому источником A в телесный угол 2 (исключая неизбежные незначительные потери на поглощение в линзе, оптическом фильтре, а также при отражении от реальной поверхности эллипсоида). Положение линзы 5' на большой оптической оси ограничено малой осью эллипсоида 2b, случай, который имеет место только для предельного угла q= (фиг.1): линза не затеняет отраженный от точки С скользящий луч (не учитываем окантовку линзы). Для углов q< и конкретного e эллипсоида предельное верхнее положение линзы можно определить из фиг.1 согласно законам геометрической оптики. Например, для =60 и fo/Do 1 необходим эллипсоид с 0,89. Для этих параметров угловая апертура линзы =48, а предельное верхнее положение линзы M/ = 0,14..

Предложенное устройство работает следующим образом.

Ультракороткий импульс (10-8c) сфокусированного до 15-20 мкм излучения лазера 1 с длиной волны o в видимой (например, лазер на парах меди с o 0,51 мкм) или ближней ИК-области спектра, достаточной мощности поступает через отверстие 3 в отражатель 2 и падает на поверхность непрозрачного образца 7 (например, металлическая пленка на подложке). Часть излучения лазера, поглотившись в образце, приводит к локальному нагреву (мгновенный источник тепла) поверхности в области A до температуры Т (х 0, =0). Тепловое излучение ИК-диапазона от области A, модулированное (при охлаждении) временным изменением температуры Т (x=0,), скорость изменения которой зависит от неоднородностей подповерхностного слоя образца и его теплофизических констант, уходящее от поверхности внутри угла , cобирается линзой и фокусируется на приемник. Другая часть излучения области A, излучаемого под углом больше b/2 от нормали к поверхности образца, отразившись зеркально от поверхности эллипсоида, собирается тоже на приемник. Излучение, падающее на приемник 4, вызывает в его цепи изменение сигнала синхронно с изменением температуры в области A. Сигнал усиливается, преобразуется, подается на ЭВМ и после сканирования исследуемой поверхности образца на дисплее получается видеоизображение дефектов подповерхностного слоя.

Часть излучения лазера, отразившаяся от поверхности образца, поступает в объем эллипсоида и, переотразившись от шероховатой поверхности, рассеивается диффузно. При этом тепловое излучение от нагретой области A образца в спектральном диапазоне чувствительности приемника отражается зеркально. Перед приемником установлен оптический фильтр 6, край полосы поглощения которого больше длины волны лазера o, но меньше коротковолновой границы к спектрального диапазона чувствительности ИК-приемника. Этим самым отраженное от образца излучение лазера сначала рассеивается и устраняется повторное попадание его на образец и появление ложного сигнала от непредусмотренной точки нагрева, а затем рассеянное излучение отрезается оптическим фильтром, т.е. устраняется попадание его на приемник.

Таким образом, предлагаемое устройство для бесконтактного неразрушающего контроля материалов по сравнению с прототипом увеличивает температурную чувствительность, так как на ИК-приемник концентрируется весь поток, излучаемый тепловым источником A внутрь отражателя, а также повысит помехозащищенность от появления ложного сигнала, так как перед ИК-приемником расположен длинноволновой оптический фильтр, отрезающий рассеянное переотраженное лазерное излучение, а внутренняя поверхность отражателя выполнена шероховатой так, что она диффузно рассеивает переотраженное коротковолновое излучение лазера и отражает зеркально тепловое излучение от источника A в спектральном диапазоне чувствительности ИК-приемника. Указанные преимущества предлагаемого изобретения расширят область применения устройства.

Формула изобретения

1. Устройство для бесконтактного неразрушающего контроля материалов, содержащее осветитель, оптическую фокусирующую систему в виде вытянутого эллипсоида вращения, усеченного плоскостями, ортогональными его большой оптической оси и проходящими через его фокусы, в первом из которых расположен исследуемый образец, во втором ИК-приемник, отличающееся тем, что система дополнительно содержит собирающую тонкую линзу и длинноволновой оптический фильтр, установленный перед ИК-приемником, причем линза установлена на большой оптической оси эллипсоида между оптическим фильтром и первым фокусом эллипсоида так, что ее главная оптическая ось совпадает с большой оптической осью эллипсоида, а апертурный угол линзы, угол обзора ИК-приемника, расстояние от первого фокуса эллипсоида до линзы и расстояние от линзы до второго фокуса эллипсоида связаны с параметрами линзы общей формулой тонкой линзы, край полосы поглощения длинноволнового оптического фильтра больше длинноволновой границы спектра излучения осветителя, но меньше коротковолновой границы спектральной чувствительности ИК-приемника.

2. Устройство для бесконтактного наразрушающего контроля материалов по п. 1, отличающееся тем, что внутренняя поверхность эллипсоида выполнена шероховатой, диффузно рассеивающей излучение осветителя и зеркально отражающей в спектральном диапазоне чувствительности ИК-приемника.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к горной автоматике, а более конкретно к автоматическому контролю содержания пыли и может быть использовано для управления топками тепловых электростанций, котельных и других термических установок, в которых сжигается уголь или мазут, а также для управления вентиляцией и пылеулавливанием на различных предприятиях

Изобретение относится к оптическим методам контроля жидких сред и может быть использовано для контроля процесса очистки технической аскорбиновой кислоты

Изобретение относится к медицинской технике, а именно к приборам для определения степени насыщения крови кислородом (StO2)

Изобретение относится к рефрактометрии и может быть использовано при изучении плотностных оптических неоднород- ностей, в частности для исследования плотностных неоднородностей морской воды

Дымомер // 2045044
Изобретение относится к приборостроению и может найти применение для измерения дымности дизельных двигателей

Изобретение относится к области исследования нестационарных процессов в придонном слое, где преобладают достаточно крупные частицы неорганического происхождения (> 50 мкм) с высокими концентрациями (> 10 г/л), а именно к средствам определения мгновенных концентраций взвешенного в воде материала, и может быть использовано для отыскания эмпирических зависимостей, описывающих процесс транспорта наносов

Изобретение относится к измерительной технике, а более конкретно к приборам для анализа газовых сред оптическими методами

Изобретение относится к измерительной технике, в частности к измерителям ослабления света мутной средой, и может использоваться для исследования и контроля окружающей водной среды

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами

Изобретение относится к технике получения керамических и металлокерамических материалов и может быть использовано при анализе качества различных шихт, в том числе содержащих нанодисперсные металлы
Наверх