Способ изготовления материала для токопроводящих контактных элементов

 

Использование: изобретение относится к электротехнике и касается способов изготовления материалов для токопроводящих контактных элементов, преимущественно электрощеток и токоприемников электроподвижного состава, работающих в условиях высоких плотностей тока, значительных вибрационных и ударных нагрузок. Сущность изобретения: на стадии совместного размола и смешения в смесь дополнительно вводят молотые отходы обожженного и графитированного материала при следующем соотношении компонентов, мас.%: молотые отходы обожженного материала - 1 - 16; молотые отходы графитированного материала - 1 - 16; углеродистый аэрогель - 2 - 20; технический углерод - 2 - 20; графит - 3 - 6; кокс - 6 - 32; связующее - остальное. 1 табл.

Изобретение относится к электротехнике и касается способов изготовления материалов для токопроводящих контактных элементов, преимущественно электрощеток и токоприемников электроподвижного состава, работающих в условиях высоких плотностей тока, значительных вибрационных и ударных нагрузок. Изобретение может быть использовано также в угольных электродах сухих элементов источников тока, для которых необходима высокая механическая прочность.

Известен способ изготовления токопроводящих контактных элементов из пресс-композиций, содержащих технический углерод, частицы натурального графита, частицы кокса и связующее, взятые в определенном соотношении [1] - аналог.

Недостатки известного способа связаны со сложностью подготовки пресс-композиции, так как компоненты подвергают совместному размолу в вибромельнице в течение достаточно длительного периода времени. Кроме того, в данном способе использовано значительное количество дорогостоящих компонентов, в частности техуглерод, природный графит и кокс.

Известен способ изготовления токопроводящих контактных элементов из пресс-композиций, содержащих технический углерод, частицы натурального графита, частицы кокса, углеродистый аэрогель и связующее [2] прототип. В данном способе удалось несколько снизить длительность технологического цикла за счет использования аэрогеля, однако количество дорогостоящих компонентов все же велико и стоимость получаемых материалов достаточно высока.

Предлагаемый способ изготовления материала для токопроводящих контактных элементов позволяет существенно уменьшить длительность цикла совместного размола и резко уменьшить использование дорогостоящих компонентов.

Это достигается за счет того, что на стадии совместного размола и смешения в смесь дополнительно вводят молотые отходы обожженного и графитированного углеродистого материала при следующем соотношении компонентов, мас.

Молотые отходы обожженного материала 1 16 Молотые отходы графитированного материала 1 16 Углеродистый аэрогель 2 20 Технический углерод 2 20 Графит 3 6 Кокс 6 32 Связующее Остальное За счет дополнительного введения молотых отходов обожженного и графитированного материала существенно ускоряются процессы размола техуглерода, графита, кокса и связующего, так как частицы данных материалов способствуют интенсификации размола.

Пример.

В вибромельницу СВМ 40/2 последовательно загружали технический углерод, размолотый кокс, графит, молотые отходы обожженного углеродистого материала, молотые отходы графитированного материала и связующее твердый высокотемпературный пек, взятые в различных соотношениях /варианты 1 3/ и размалывали в течение 40 45 минут. Полученный порошок прессовали через сетку 17 на вибросите и прессовали при удельном давлении 1000 кгс/см2 в блоки размером 90х90х3000 мм с кажущейся плотностью 1,28 1,30 г/см3. Блоки обжигали при температуре 1200oC и графитировали при 2800oC. Из готового материала изготавливали образцы и контактные токопроводящие элементы, которые подвергали испытаниям.

Результаты испытаний представлены в таблице. Как следует из представленных данных, применение предлагаемого способа изготовления материала взамен известного позволяет реализовать следующие преимущества: на 20 40% сокращается длительность подготовки пресс-композиции в вибромельнице; на 15 30% снижается коэффициент трения;
в 1,3 1,6 раза уменьшается износ элементов при их эксплуатации;
ликвидируются местные перегревы.


Формула изобретения

Способ изготовления материала для токопроводящих контактных элементов, включающий совместный размол и смешение технического углерода, графита, кокса, углеродистого аэрогеля, связующего, формование из полученных порошков заготовок и их термообработку, отличающийся тем, что на стадии совместного размола и смешения в смесь дополнительно вводят молотые отходы обожженного и графитированного углеродистого материала при следующем соотношении компонентов, мас.

Молотые отходы обожженного материала 1 16
Молотые отходы графитированного материала 1 16
Углеродистый аэрогель 2 20
Технический углерод 2 20
Графит 3 6
Кокс 6 32
Связующее Остальноез

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к электротехнике и касается способов изготовления щеток для электрических машин, работающих в условиях затрудненной коммутации, при наличии значительных вибрационных и ударных нагрузок, например, тяговых электродвигателей электровозов

Изобретение относится к электротехнике и может быть использовано в электромашиностроении и транспорте

Изобретение относится к электротехнике и касается металлографитных щеток электрических машин

Изобретение относится к автоматизации технологических процессов, в частности к сборке щеток электрических машин

Изобретение относится к электротехнике, в частности к технологии электромашиностроения

Изобретение относится к электромашиностроению, в частности к изготовлению коллекторных электрических машин

Изобретение относится к электротехнике и касается технологии изготовления щеток электрических машин электроинструмента

Изобретение относится к электротехнике и касается способов изготовления щеток для электрических машин различного назначения

Изобретение относится к электротехнике и касается композиции для изготовления щеток электрических машин, в частности щеток для двигателей железнодорожного и городского транспорта
Изобретение относится к электротехнике и касается композиции для изготовления щеток электрических машин, генераторов и двигателей с резко выраженной неравномерной токовой нагрузкой

Изобретение относится к электротехнике и касается способа изготовления высокоомных щеток электрических машин, а именно электрических машин с затрудненными условиями коммутации
Изобретение относится к электрощеточному производству, в частности к изготовлению щеток для стартеров, генераторов и автомобильных электродвигателей напряжением питания 12 и 24 В. Способ изготовления щеток электрических машин включает смешение наполнителя со связующим, измельчение, прессование, спекание. Совместный помол графитового наполнителя с полимерным связующим производится в вибромельнице. В грануляторе полимер растворяется этиловым спиртом для приготовления смолографитовых гранул. Затем растворитель высушивается в виброкипящем слое инфракрасной сушилки. После прессования с одновременной запрессовкой провода щетки нагревают до 200°C для полимеризации связующего и спекают в среде азота с добавкой водорода при 680-950°C. Техническим результатом является получение однородного, сыпучего пресс-порошка с хорошей прессуемостью, стабильного грансостава для изготовления прочного тела электрощетки. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области электротехники. Способ предусматривает насыщение путем пропитки дополнительной связующей и антифрикционной добавкой материала для токопроводящих контактных элементов, заготовки с готовыми размерами контактного элемента, причем вначале в качестве связующей добавки используют полимер на основе фурфурилового спирта, полимеризованный при конечной температуре 160°С - 220°С в количестве 5 масс. % - 15 масс. %, а затем в качестве антифрикционной добавки - полимер на основе фурфурилового спирта, полимеризованный при конечной температуре 110°С - 160°С в количестве 1 масс. % - 8 масс. %. Способ позволяет повысить прочность материала для токопроводящих контактных элементов и стойкость к воздействию ударных вибрационных нагрузок, а также существенно улучшить антифрикционные свойства материала. Технический результат заключается в повышении электроэрозионной стойкости материала токопроводящих контактных элементов, ликвидации на контактной поверхности поджогов и выкрашивания материала, снижении износа и повышение стойкости материала к воздействию ударных и вибрационных нагрузок. 1 табл.
Наверх