Способ измерения тепловых параметров электрической машины

 

Сущность изобретения: способ основан на измерении потерь и превышении температуры одного из элементов машины, при этом измеряют превышение температуры произвольного наиболее доступного элемента. Измерения ведут в несколько этапов при постоянных во время этапа значениях тока главной цепи и напряжений, сочетания значений упомянутых величин произвольны, и от этапа к этапу не повторяются. Число этапов должно быть не менее n+1, где n - число элементов эквивалентной тепловой схемы электрической машины. Описанный способ позволяет повысить информативность и уменьшить время испытаний. 2 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике, а именно к способам испытаний электрических машин.

Тепловые параметры электрической машины, представляемые обычно в виде матрицы тепловых проводимостей (тепловых сопротивлений) эквивалентной тепловой схемы (ЭТС), являются одной из важнейших характеристик, используемых при проектировании электрической машины, ее изготовлении и эксплуатации.

Известны способы измерения тепловых параметров электрических машин, производимые в рамках промышленных или лабораторных испытаний, в частности метод косвенной нагрузки. Согласно этому методу создают несколько продолжительных режимов работы, при которых действуют отдельные составляющие потерь Q. При этом замеряют частичные превышения температуры отдельных элементов электрической машины. Указанные частичные превышения температуры суммируют по определенному правилу, что позволяет в итоге получить результирующие значения превышений температуры без использования непосредственной нагрузки машины. Искомые тепловые параметры определяют по известным соотношениям между измеренными значениями Q и Dq [1] Наиболее близок по технической сущности к предложенному способ измерения тепловых параметров электродвигателя, основанный на измерении потерь и превышения температуры одного из элементов двигателя, например, обмотки статора, при испытаниях двигателя в нескольких продолжительных режимах работы, в том числе режимах специального включения. В результате математических преобразований измеренных величин получают тепловые параметры электродвигателя в виде эквивалентных тепловых сопротивлений (проводимостей) и коэффициентов влияния греющих потерь [2] Определение полного комплекса тепловых параметров согласно данному способу возможно путем его последовательного применения ко всем элементам двигателя, являющимся узлами исходной ЭТС, что значительно увеличивает время испытаний и ограничивает практическое применение способа. Кроме того, результаты, полученные по данному способу, непригодны в силу ограниченности используемой математической тепловой модели электродвигателя для анализа тепловой динамики двигателя в переходных тепловых режимах. Наконец, измерение температуры обмотки, являясь необходимым условием указанного способа, сопряжено с определенными техническими трудностями (необходимость разборки электрической машины). В отдельных случаях (высоковольтные машины) применение такого способа ограниченно по условиям электробезопасности. Таким образом, реализация способа возможна лишь в условиях испытательной лаборатории.

Задача, решаемая изобретением, это существенное повышение информативности способа измерения тепловых параметров электрической машины в рамках одного теплового испытания. Сопутствующим эффектом является уменьшение времени испытаний и достижение возможности реализации данного способа в эксплуатационных условиях работы электрической машины.

Решение поставленной задачи возможно, если в способе измерения тепловых параметров электрической машины, основанном на определении потерь во всех элементах машины и измерении превышения температуры одного из элементов в процессе испытания машины в продолжительном режиме работы и определении тепловых параметров с помощью математической обработки измеренных величин испытания ведут в несколько этапов, характеризующихся постоянными за время этапа значениями тока главной цепи и напряжения, причем сочетания фиксированных значений тока и напряжения произвольны и от этапа к этапу не повторяются, а число этапов должно быть не менее n+1, где n число элементов (узлов) эквивалентной тепловой схемы электрической машины. Тепловые измерения при этом проводят на любом элементе машины, а математическая обработка измеренных величин для определения тепловых параметров включает определение коэффициентов для прямого преобразования системы уравнений исходной эквивалентной тепловой схемы к виду , где X, F вектор-столбцы параметров, пропорциональных соответственно превышению температуры и тепловым потерям электрической машины; А матрица параметров, пропорциональных тепловым проводимостям эквивалентной тепловой схемы электрической машины; определение по компонентам амплитудного и частотного спектра, полученным в результате спектрального разложения графика температуры на каждом этапе испытаний, собственных значений и собственных векторов матрицы А; восстановление матрицы А из уравнения A= VVт, где V матрица собственных вектор-столбцов матрицы А; диагональная матрица собственных значений матрицы А;
Vт транспонированная матрица V;
и обратное преобразование каждого элемента матрицы А для получения искомых значений матрицы тепловых параметров.

Сравнение изобретения с другими техническими решениями показывает, что во всех способах тепловых испытаний производится измерение температуры электрической машины. Причем как измерение тепловых параметров, так и оценка текущего теплового состояния машины предполагают в качестве обязательного элемента испытаний измерения на обмотках.

Сущность изобретения состоит в том, что при измерении тепловых параметров производится измерение превышения температуры любого участвующего в теплообмене элемента электрической машины, что свидетельствует о качественно новом свойстве данной операции, проявляемом в совокупности с другими процедурами, что приводит к расширению возможностей реализации способа.

Динамику тепловых процессов в электрических машинах принято описывать системой обыкновенных дифференциальных уравнений вида

где Ci, i, Qi соответственно теплоемкость, превышение температуры и тепловые потери i-го элемента ЭТС электрической машины;
ik тепловая проводимость от i-го к k-му элементу ЭТС.

Решение системы (1) получают в виде
,
где yi установившееся превышение температуры i-го элемента;
Hij вектор-компонент амплитудного спектра;
j вектор-компонент частотного спектра i-го решения системы (1).

Задача измерения тепловых параметров электрической машины сводится, таким образом, к определению матрицы по известным значениям тепловых потерь в элементах (узлах) ЭТС электрической машины и снятому в процессе испытаний графику изменения температуры i-го элемента qi(t).

Путем введения новых переменных система (1) может быть преобразована к виду:

где ;

Таким образом, задача определения тепловых параметров равносильна задаче определения матрицы А. Для этого производится спектральный анализ графика i(t), результатом которого будут векторы значений амплитудного Hij и частотного i спектров, заданных в форме (2).

Полученные значения представляют собой вектор собственных значений матрицы А.

Собственные вектора V определяют из матричного уравнения
FV=-H,
где F матрица размером m x p, где m > p число этапов испытаний, p - порядок тепловой модели, каждая строка которой является вектором правых частей системы (3) по этапам испытаний; 1, 2,m;
Н матрица, каждая строка которой представляет собой амплитудный спектр графика температуры по этапам испытаний;
l = diag{1, 2,...p} диагональная матрица собственных значений матрицы А.

По известным собственным значениям и собственным векторам восстанавливается матрица А:
A = VVT,
где Vт транспонированная матрица V.

Каждый элемент искомой матрицы тепловых проводимостей электрической машины получают из обратного преобразования (3):

Для практического решения этой задачи используется измерительно-вычислительная система (ИВС) сбора и обработки данных. При этом измеряются и фиксируются в памяти ИВС значения тока главной цепи электрической машины I и сетевого напряжения U, а также дискретная последовательность измеренных значений превышения температуры, взятых через интервал времени t, величина которого в каждом конкретном случае определяется предварительно из условий маскировки частот: t < 1/2 max, где max максимально возможное для данного типа машины собственное значение матрицы тепловых проводимостей ЭТС.

Используя измеренные значения U и I и известные соотношения между ними и тепловыми потерями в электрической машине вычисляют последние как Qi - f(U, I), а также находят переменные по выражению (3).

Исходя из требований вычислительной процедуры определения число этапов испытаний определяется из условия n > p, т.е. должно быть не менее увеличенного на единицу порядка тепловой модели электрической машины (количества узлов ее ЭТС).

Электрическая нагрузка (ток главной цепи) и напряжение на каждом этапе испытаний должны задаваться из условия линейной независимости правых частей уравнений системы (3), т.к. лишь в этом случае имеется возможность получения единственного его решения относительно А. Практически это условие может быть реализовано, в частности, заданием этапных значений U и I на нескольких постоянных уровнях в неповторяющихся сочетаниях.

Продолжительность этапа испытаний определяют исходя из условий фильтрации сигнала q(t) на низких частотах. Практически достаточной будет продолжительность одного этапа испытаний в пределах от 10 до 20% от продолжительности испытаний электрической машины в стандартном продолжительном режиме.

Рассмотрим реализацию способа на примере асинхронного короткозамкнутого двигателя закрытого исполнения. ЭТС двигателя включает в себя обмотку статора, ротор, сталь статора и внутренний воздух, т.е. может быть представлена системой 4 порядка. Датчик температуры встраивается в корпус. Таким образом число испытаний должно составлять не менее пяти. На чертеже, поясняющем реализацию способа, показаны графики изменения электрических параметров испытуемого двигателя (ток I и напряжение U статора). По оси абсцисс римскими цифрами обозначены этапы испытаний. Первые три этапа испытаний производят при включении обмоток статора в треугольник, т.е. при номинальном напряжении Uном. Ток статора меняют произвольно путем изменения нагрузки на валу двигателя. Пределы изменения этого параметра: от минимального, соответствующего режиму холостого хода (Ixx), до (1,1,1,2)Iном. По окончании третьего этапа автоматически производят переключение обмоток статора в звезду, что ведет к снижению напряжения в раз. Изменение тока в следующих этапах производят аналогично.

Алгоритмом обработки данных испытаний предусмотрено использование избыточной информации для проверки полученных результатов и их уточнения. В силу этого обстоятельства желательно увеличение числа этапов испытания свыше необходимого их числа. Так, измерение тепловых параметров электродвигателя, выполненное в рамках испытаний, основанных на заявляемом способе, дало погрешность при определении значений элементов матрицы А для минимально допустимого числа испытаний n 5 в пределах (5.10)% Увеличение числа этапов испытаний до n 7 позволило снизить погрешность до (3.7)%


Формула изобретения

1. Способ измерения тепловых параметров электрической машины, при котором определяют потери во всех элементах машины, измеряют превышение температуры одного из элементов в процессе испытания машины в продолжительном режиме работы и с помощью математической обработки измеренных величин определяют тепловые параметры, отличающийся тем, что испытание ведут в несколько этапов, характеризующихся постоянными за время этапа значениями тока главной цепи машины и напряжения, при этом сочетания значений тока и напряжения выбирают произвольными и от этапа к этапу не повторяющимися, а число этапов выбирают не менее n + 1, где n число элементов или узлов эквивалентной тепловой схемы электрической машины.

2. Способ по п. 1, отличающийся тем, что измеряют превышение температуры произвольного элемента машины.

3. Способ по пп. 1 и 2, отличающийся тем, что математическая обработка измеренных величин для определения тепловых параметров включает определение коэффициентов для прямого преобразования системы уравнений исходной эквивалентной тепловой схемы к виду
dX / dt + AX F,
где X, F вектор-столбцы параметров, пропорциональных соответственно превышению температуры и тепловым потерям электрической машины;
A матрица параметров, пропорциональных тепловым проводимостям эквивалентной тепловой схемы электрической машины,
далее по компонентам амплитудного и частотного спектра, полученным в результате спектрального разложения графика температуры на каждом этапе испытаний, определяют собственные значения и собственные векторы матрицы А, восстанавливают матрицу А из уравнения
A= VVт,
где V матрица собственных вектор-столбцов матрицы А;
диагональная матрица собственных значений матрицы А;
Vт транспонированная матрица,
и производят обратное преобразование каждого элемента матрицы А для получения искомых значений матрицы тепловых параметров.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к электромашиностроению и касается электрических машин постоянного тока, обращенных синхронных машин, когтевых электрических машин и других типов машин в маломагнитном исполнении, у которых постоянный магнитный момент определяется полем обмотки возбуждения
Изобретение относится к способам испытания без применения механического привода для испытания электрических синхронных генераторов (далее - генераторы), предназначенных, в основном, для передвижных воздушных, водных и наземных транспортных средств, а также общепромышленного назначения при их серийном производстве

Изобретение относится к области электротехники и может быть использовано для контроля работы электрических машин

Изобретение относится к электротехнике, в частности к электроизмерительной технике, и может быть использовано для измерения параметров при контроле коммутации коллекторных электрических машин

Изобретение относится к электротехнике, в частности к устройствам контроля коммутации путем бесконтактного измерения мгновенных значений тока разрыва в коммутируемых секциях коллекторных электрических машин

Изобретение относится к испытанию мощных асинхронных электродвигателей с короткозамкнутым ротором, дугостаторных и дисковых электродвигателей

Изобретение относится к электротехнике и может быть использовано для определения параметров синхронных электрических машин

Изобретение относится к средствам измерения электромеханических характеристик электродвигателей и может быть использовано в контрольно-испытательной аппаратуре при изготовлении и капитальном ремонте электродвигателей и для диагностики электроприводов

Изобретение относится к электротехнике и может быть использовано при испытаниях электрических машин постоянного тока с независимым возбуждением под нагрузкой

Изобретение относится к измерительной аппаратуре, применяемой в электротехнике, и, в частности, может быть использовано для контроля воздушного зазора синхронной электрической машины, например гидрогенератора
Наверх