Способ производства изотропной электротехнической стали

 

Изобретение относится к области металлургии и может быть использовано при производстве изотропной электротехнической стали. Сущность изобретения: способ включает выплавку стали с содержанием кремния: Si = (2 - 3,5) мас.%, прокатку, смотку горячекатаной стали в рулоны, нормализацию распущенной стали, холодную прокатку на конечную толщину, отжиг холоднокатаной стали. Температуру нормализации устанавливают в зависимости от температуры смотки по соотношению: Tно(oC) = 1,5 to см (oC) - 70(oC) 5 (oC). Данный способ позволяет снизить удельные потери на перемагничивание по сравнению с известными. 1 табл.

Изобретение относится к области металлургии, в частности, к способам производства изотропных сталей.

Технология производства изотропной электротехнической стали включает горячую прокатку стали с последующей смоткой ее в рулоны при температуре выше 500oС [1] Известны способы производства изотропных электротехнических сталей, включающие нормализацию горячекатаного листа при температуре 700-1000oC (2), 815-1148oC (3) 850-900oC (4), 900-1000oC (5).

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому решению является способ производства листов из нетекстурованной кремнистой стали с высокими электромагнитными свойствами, включающий отжиг горячекатаных листов при температуре 700-950oC в течение от 2 мин до 20 ч, холодную прокатку отожженного листа до окончательного размера и отжиг при 750-1000oC (6).

Данный способ выбран в качестве прототипа. Общим недостатком вышеуказанных способов и прототипа является то, что режимы нормализации устанавливаются независимо от температуры смотки в рулоны горячекатаной стали. Это приводит к тому, что при несогласованности температурных режимов смотки и нормализации будет иметь место разброс в структуре нормализованной стали и, соответственно, снижение среднего уровня магнитных свойств готовой стали. Этот недостаток можно устранить, если проводить корректировку температуры нормализации, исходя из фактических режимов смотки.

Для снижения удельных потерь на перемагничивание в способе производства изотропной электротехнической стали, включающим выплавку стали с содержанием Si 2-3,5% горячую прокатку, смотку горячекатаной стали в рулоны, нормализацию распущенной стали, холодную прокатку на конечную толщину, отжиг холоднокатаной стали, температуру нормализации (tно) устанавливают в зависимости от температуры смотки (tсм) по соотношению: tно(oC) 1,5tсм(oC 70oC5(oC) (I) Известно, что на уровень удельных потерь существенное влияние оказывает количество дисперсных частиц в нормализованной стали [7] чем меньше дисперсных фаз, тем ниже потери на перемагничивание в готовой стали. Дисперсные частицы (в основном, нитриды алюминия) выделяются преимущественно на стадии смотки горячекатаных рулонов. Причем, чем выше температура смотки, тем больше количество выделившихся дисперсных частиц [8] Такая зависимость связана с тем, что максимальная скорость выделения дисперсных нитридов алюминия (при отсутствии промежуточной закалки полосы) наблюдается в диапазоне 750-800oC [9] По этой причине температуру смотки горячекатаной стали ограничивают диапазоном, например, на НЛМК 590-660oC. При температурах более 800oC скорость выделения AlN также падает, но увеличивается скорость коалесценции дисперсных фаз. По этой причине, если установлена высокая температура смотки (не менее 750oC), то снижения количества дисперсных частиц за счет развития коалесценции необходимо увеличить температуру нормализации. В то же время оптимальная температура нормализации ограничена сверху из-за увеличения зоны внутреннего окисления с повышением температуры.

Таким образом, для снижения удельных потерь температуру нормализации необходимо корректировать в зависимости от температуры смотки. Эта зависимость получена экспериментальным путем.

Способ опробован в условиях Ново-Липецкого меткомбината, на металле 2 плавок содержанием Si 3,14 C 0,020 Al 0,45 Mn 0,30 (пл.1) и Si 2,86 C 0,029 Al 0,33 Mn 0,25 (пл.2).

Горячую прокатку металла проводили на толщину 2,2 мм. Далее проводили смотку горячекатаного металла при температурах, обычно устанавливаемых в ЛПЦ-3 НЛЦК: 590, 630, 660oC. При этих температурах делали выдержку в 3 ч. Необходимую температуру нормализации рассчитывали из уравнения (I). Далее, после зачистки металла проводили однократную холодную прокатку на толщину 0,5 мм. Далее холоднокатаный металл обезуглероживали при t 830oC и подвергали заключительному отжигу при t 1000oC.

За обработку по прототипу принимали обработку, включающую нормализацию при tно 750oC и 910oC.

В таблице 1 приведены результаты замера удельных потерь на образцах, прошедших обработку по различным режимам. Из представленных в таблице 1 данных видно, что проведение нормализации при температурах, рассчитанных по формуле (I), позволяет достичь уровня потерь в среднем 2,74 Вт/кг для пл.1 (обр. 3, 4, 5, 10, 11, 12, 17, 18, 19) и 2,77 Вт/кг для пл.2. В тоже время нормализация при других температурах, но в диапазоне 805-910oC (обр. 2, 6, 7, 9, 13, 14, 16, 20) обеспечила уровень удельных потерь в среднем 2,81 (для пл.1) и 2,84 (для пл.2) Вт/кг, а нормализация по прототипу 2,83 (для пл.1) и 2,87 (для пл.2) Вт/кг.

Таким образом, проведение нормализации при температурах, определяемых по формуле (I), позволяет снизить удельные потери на 0,07 0,09 вт/кг по сравнению с другими режимами нормализации.

Формула изобретения

Способ производства изотропной электротехнической стали, включающий выплавку стали с содержанием 2,0 3,5 мас. кремния, горячую прокатку, нормализацию, холодную прокатку на конечную толщину, отжиг холоднокатаной стали, отличающийся тем, что перед нормализацией осуществляют смотку горячекатаной стали в рулон, а при нормализации распущенной стали температуру Tно устанавливают в зависимости от температуры смотки tсм по соотношению Tно= 1,5tсм- 705,C.о

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области магнитных материалов, в частности ферритовых материалов для магнитоакустических устройств

Изобретение относится к области получения магнитных жидкостей (МЖ) на основе высокодисперсного магнетита, которые применяются в приборостроении, медицине и т.д
Изобретение относится к получению носителей магнитной записи и может быть использовано при получении магнитного порошка кобальтсодержащего магнитного оксида железа

Изобретение относится к магнитным материалам, в частности к материалам для постоянных магнитов на основе соединений редкоземельных элементов с металлами железной триады
Изобретение относится к получению магнитных материалов, в частности магнитных материалов, диспергированных или взвешенных в жидкости

Изобретение относится к ферромагнитным материалам и технологии их получения, в частности к магнитным жидкостям, применяемым для разделения немагнитных материалов по плотности, например, для безамальгационного извлечения свободного золота из россыпных рудных концентратов, а также их используют для очистки сточных вод от нефтепродуктов

Изобретение относится к области металлургии, в частности, к производству тонколистовой электротехнической стали с ребровой текстурой

Изобретение относится к металлургии и может применяться для производства электротехнической нелегированной тонколистовой (релейной) стали

Изобретение относится к металлургии и может применяться для производства полос из ферритных сплавов

Изобретение относится к металлургии и может применяться при производстве электротехнической стали из железокремнистых сплавов

Изобретение относится к металлургии и может применяться при производстве электротехнической стали из железокремнистой стали

Изобретение относится к области металлургии, в частности к технологии производства холоднокатаной электротехнической стали

Изобретение относится к технологии производства магнитов Fe-Cr-Co, используемых в электротехнике и приборостроении

Изобретение относится к металлургии и может применяться при производстве изотропной электротехнической стали и электротехнической нелегированной тонколистовой (релейной) стали

Изобретение относится к металлургии и может быть использовано при термической обработке сплавов на основе железа типа сендаст для магнитных головок
Наверх