Способ микробиологического получения уксусной кислоты

 

Использование: биотехнология, в частности способы микробиологического получения уксусной кислоты. Сущность изобретения: способ состоит в проведении процесса с помощью термофильных анаэробных гормоацетатных бактерий Acotogenium kivin, иммобилизованных в 8-12 % криогель поливинилового спирта, при этом достигается более высокая концентрация конечного продукта и снижаются требования к стерильности и анаэробиозу процесса. 1 з. п. ф-лы, 2 табл.

Изобретение относится к биотехнологии, в частности к способам микробиологического получения уксусной кислоты.

В настоящее время уксусная кислота производится путем энергоемкого химического синтеза при каталитическом карбонилировании метанола (процесс Монсанто) или более дешевым ферментативным путем из этанола при участии аэробных мезофильных бактерий из рода Acetobacter [1] В свою очередь, этанол получают при ферментации углеводсодержащих сред, используя культуру дрожжей. Однако теоретический выход уксусной кислоты низкий, а используемое сырье является ценным продуктов, находящим широкое применение.

Известны анаэробные гомоацетатные бактерии, способные при гетеротрофном и автотрофном питании синтезировать уксусную кислоту (ацетат) из сахаров и газовых смесей с более высоким выходом продукта, чем упомянутый аэробный процесс [2 и 3] но, лишь немногочисленные исследования посвящены разработке ферментаций с использованием дешевых газовых субстратов, таких как CO, H2 и CO2, для получения ацетата [4 и 5] Так, известен способ синтеза уксусной кислоты из углекислого газа и водорода с помощью растущей термофильной анаэробной бактерии Acetogenium kivui, штамм LKT [6] позволяющий проводить процесс при повышенной температуре, что обеспечивает защиту от заражения посторонней мезофильной микрофлорой. При этом конечная концентрация продукта достигает 24 г/л, а продуктивность процесса составляет 0,17 г/л час. Недостатками способа являются использование растущей культуры, необходимость дорогостоящей очистки газов от примесей кислорода и поддержания строго анаэробных условий.

Наиболее близким к изобретению является способ получения ацетата из газовой смеси H2 и CO2 с помощью свободных и иммобилизованных в альгинатный гель клеток мезофильной бактерии Acetobacterium (штамм BR-446) [7] осуществляемый в непрерывном режиме с использованием мембранного реактора и позволяющий достичь концентрации конечного продукта уксусной кислоты в элюате 4,0 г/л и 2,0 г/л для иммобилизованных и свободных клеток, соответственно.

Процесс проводится с помощью растущих клеток, в строго анаэробных условиях, поэтому газовый субстрат смесь H2 и CO2 должен быть тщательно очищен даже от следов кислорода. Кроме того, недостатками способа являются также повышенная опасность заражения посторонней микрофлорой (процесс проходит при 35oC) и невысокие конечные концентрации продукта в растворе.

Задача изобретения преодоление указанных недостатков известных технических решений, т.е. использование растущей культуры, строгие требования к анаэробиозу процесса и чистоте используемых газовых субстратов.

Задача решается тем, что получение ацетата проводят в отсутствии заметного бактериального роста с использованием клеток, включенных в частицы 8 12% -ного криогеля поливинилового спирта (ПВС), причем процесс по предлагаемому способу может быть проведен из смеси водорода и CO2, содержащих до 1 об. кислорода, т.е. нет очищенной от его примесей.

Способ получения ацетата из газовых субстратов (смесь H2 и CO2) с использованием клеток термофильной бактерии Acetogenium kivui [8] включенных в 8 12%-ный криогель ПВС, позволяет, как оказалось, проводить процесс в условиях отсутствия микробного роста. Это новое качество данной культуры, приобретаемое ею после иммобилизации в данный носитель, известно не было, т.е. предлагаемое техническое решение отвечает критериям новизны и неочевидности. Кроме того, оказалось, что включение клеток A. kivui в криогель ПВС делает данную культуру малочувствительной к примесям кислорода в рабочей газовой смеси, что также являлось неочевидным моментом и ранее известно не было.

Способ осуществляют следующим образом.

Наращивание биомассы анаэробной термофильной гомоацетогенной бактерии штамм Acetogenium kivui DSM 2030 проводят с использованием стандартной анаэробной техники в ферментере с постоянным протоком газов, перемешиванием, контролем pH(6,4) и температуры (86oC). Минеральная среда содержит, г/л: KH2PO4 0,22; K2HPO4 0,22; NaH2PO4 2H2O 4,5; Na2HPO3 12H2O 6,1; NaCl 0,45; MgSO4 7H2O 0,09; CaCl2 2H2O 0,006; FeSO4 7H2O 0,002; NaHCO3 4,5; NH4Cl 0,3; (NH4)SO4 0,22; цистеин 0,5; раствор микроэлементов 10 мл/л [8] Среду стерилизуют автоклавированием, затем охлаждают до 66oC под током азота.

Рабочая газовая смесь, содержащая 80 об. H2 и 20 об. CO2, освобождается от примесей кислорода пропусканием ее через колонку с катализатором. В качестве инокулята используют 100 мл 3х суточной культуры A. kivui. Рост бактерии контролируют по изменению оптической плотности при D660. Клетки собирают в экспоненциальной фазе роста центрифугированием при 5000 об/мин в течение 30 мин, и используют полученную биомассу для иммобилизации. Иммобилизацию проводят путем включения клеток в 8 12% криогель ПВС. Образование гранул происходит в криоиммобилизационной колонне, заполненной пентаном (при -30o), в которую подается смесь раствора полимера с клетками. Гранулы полимера собирают в приемник. Полученный биокатализатор промывают 30-кратным объемом стерильной дистиллированной воды и используют в дальнейшей работе. При включении клеток бактерии в криогель ПВС, содержащий менее 8% матрица биокатализатора имеет недостаточную механическую прочность, а при использовании раствора ПВС с концентрацией более 12% - затрудняется доступ субстратов и отвод продуктов из матрицы геля.

Ферментация с помощью иммобилизованных клеток полунепрерывным способом состоит в следующем.

2 г биокатализатора помещают в 500-миллиметровые сывороточные бутылки, приливают 100 мл стерильной среды указанного выше состава и бутылку герметично закрывают. Затем газовую фазу замещают на рабочую смесь H2:CO2 (80:20). Далее флакон термостатируют при 66oC без перемешивания в течение 8 10 суток, постоянно (через 2 3 сут) отбирая шприцом пробы для определения концентрации ацетата и значения pH. Постоянно проводят также подкачку рабочей газовой смеси. Постоянный микроскопический контроль среды показывает практически полное отсутствие свободных клеток в среде в течение всей ферментации.

В табл. 1 приведены данные, показывающие влияние примесей кислорода на процессе образования уксусной кислоты свободными и иммобилизованными клетками A. kivui. Из таблицы ясно, что роста свободных клеток и, следовательно, накопления ацетата, в присутствии следовых (до 0,1) количества кислорода не наблюдается. Увеличение в 2 раза максимальной концентрации уксусной кислоты в системе с иммобилизованными клетками происходит из-за более полного потреблением субстрата за счет пролонгирования синтетически активной фазы клеток.

Пример 1. Способ получения уксусной кислоты с помощью ферментации иммобилизованных клеток A. kivui в непрерывном режиме. Процесс проводят в термостатируемом проточном колонном реакторе объемом 60 мл. Минеральную среду и рабочую газовую смесь (H2:CO2, 80:20) подают через отдельные патрубки в нижней части колонны. За счет газового потока происходит перемешивание в реакторе. Отвод газов и среды производят через патрубки в верхней части колонны. Соотношение объемов 10%-ного биокатализатора и жидкой фазы составляет 1:1. Скорость подачи газовой смеси 150 мл/мин. Измерение концентрации накопившегося ацетата проводят на выходе из реактора. Состав минеральной среды аналогичен указанному выше. Процесс проводят при различных скоростях подачи жидкой фазы в реактор.

В табл. 2 представлены данные, отражающие зависимость продуктивности процесса от скорости разведения в реакторе. Из таблицы видно, что существует обратная корреляция между концентраций накопленной в среде уксусной кислоты и скоростью разведения в реакторе. Продуктивность непрерывного процесса получения уксусной кислоты является максимальной 0,55 г/л час при скоростях разведения 0,09 и 0,33 ч-1 и превышает более чем в 20 раз продуктивность описанного выше полунепрерывного способа. При этом концентрация конечного продукта составляет 6 г/л, что в 1,5 раза выше известного способа [7] с иммобилизованными клетками Acetobacterium (BR-446), включенными в Ca-альгинатный гелевый носитель.

Пример 2. Получение ацетата проводят по методике примера 1, с той разницей, что используют клетки, включенные в 8%-ный криогель ПВС. При скорости разведения в реакторе 0,0195 л/ч достигается концентрация уксусной кислоты в среде до 1,54 г/л при объемной продуктивности 0,51 г/л ч.

Пример 3. Получение ацетата проводят по методике примера 1, с той разницей, что используют клетки, включенные в 12%-ный криогель ПВС. При скорости разведения в реакторе 0,0195 л/ч достигается концентрация уксусной кислоты в среде до 1,4 г/л при объемной продуктивности 0,462 г/л ч.

Таким образом, создан процесс получения уксусной кислоты, который проводят в условиях отсутствия бактериального роста, с использованием неочищенных от примесей кислорода газовых субстратов ( водорода и углекислого газа). Способ осуществляют с помощью термофильных анаэробных гомоацетогенных бактерий Acetogenium kivui, иммобилизованных в 8 12% криогель поливинилового спирта, в результате чего достигается более высокая концентрация конечного продукта (по сравнению с Пример 4. Получение ацетата проводят по методике примера 1, с той разницей, что используют клетки Acetogenium kivui штамм 2/89. При скорости разведения в реакторе 0,0195 л/ч достигается концентрация уксусной кислоты в среде до 0,87 г/л при объемной продуктивности 0,29 г/лч.

Пример 5. Получение ацетата проводят по методике примера 3, с той разницей, что используют клетки Acetogenium kivui штамм 5/89. При скорости разведения в реакторе 0,0196 л/ч достигается концентрация уксусной кислоты в среде до 1,1 г/л при объемной продуктивности 0,36 г/лч. прототипом и снижаются требования к стерильности и анаэробиозу процесса.

СПИСОК ЛИТЕРАТУРЫ 1. Weimer, P.J. (1986). in Thermophiles. General Molicular and Applied Microbiology (Brock, T. ed.), A.Wiley Sons, Inc. p. 217-255.

2. Eysmondt von, J. Vasic-Racki, Dj. and Wandrey, Ch. (1990) Appl. Microbiol Biotechnol. 34, 344-349.

3. Parekh, S.R. and Cheryan, M. 1990, Biotechnol. Lett. 12, 861-864.

4. Schoberth, S. (1977) Arch. Microbiol. 114, 143-148.

5. Rainina, E. I. Pusheva, M.A. Ryabokon, A.M. et al (1994) Biotechnol. Appl. Biochem. 19, 321-329.

6. Leigh, J. A. Mayer, F. and Wolfe, R.S. (1981) Arch. Microbiol. 129, 275-280.

7. Morinaga, J. and N.Kawada (1990) J.Biotechnol. 14, 187-194.

8. Пушева М. А. Райнина Е.И. Бородулина Н.П. и др. 1991, Микробиология, 60, 616-621.

Формула изобретения

1. Способ микробиологического получения уксусной кислоты, включающий культивирование гомоацетатных анаэробных микроорганизмов, их иммобилизацию и последующее получение целевого продукта путем ферментации на газовых субстратах, отличающийся тем, что культивируют термофильные гомоацетатные бактерии Acetogenium kivui, иммобилизацию осуществляют путем включения бактериальных клеток в гранулы 8 12-ого криогеля поливинилового спирта и целевой продукт получают в условиях отсутствия бактериального роста.

2. Способ по п. 1, отличающийся тем, что в качестве субстрата для получения уксусной кислоты используют смесь водорода и углекислого газа в соотношении 4 1, которая может содержать примесь кислорода.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к энзимологии и может быть использовано для научно-исследовательских целей и в производстве препаратов крови для улучшения их качества

Изобретение относится к биотехнологии, в частности к усовершенствованному способу получения магнитных микроносителей для культивирования клеток эукариот

Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому определению микроколичеств моноаминов в биологических средах и может быть использовано для клинического и токсикологического анализа в медицине и фармакологии

Изобретение относится к биотехнологии, а именно к способу иммобилизации В-глюкозидазы
Изобретение относится к области биотехнологии, в частности к способам получения гетерогенных биокатализаторов ферментов, иммобилизованных в нерастворимых матрицах, которые могут найти широкое применение в химической, пищевой, медицинской и микробиологической промышленностях
Изобретение относится к области биотехнологии, в частности к способу получения гетерогенных биокатализаторов (ферментов, иммобилизованных в нерастворимых матрицах) которые могут найти широкое применение в химической, пищевой, медицинской и микробиологической промышленности

Изобретение относится к сельскому хозяйству, в частности к получению биологического удобрения
Изобретение относится к прикладной вирусологии, конкретно к процессам выделения, очистки, модификации вирусов и вирусных препаратов, т.е

Изобретение относится к области биотехнологии и касается получения полусинтетических беталактамных антибиотиков аминопенициллинов и аминоцефалоспоринов, а также их N-замещенных производных ферментативной трансформацией исходного беталактамного соединения в присутствии ферментной системы

Изобретение относится к области биотехнологии и может быть использовано для создания электрохимических генераторов электричества, конкретно топливных элементов, использующих в качестве топлива молекулярный водород, а в качестве окислителя кислород, в том числе входящий в состав воздуха

Изобретение относится к области биотехнологии

Изобретение относится к биотехнологии, а именно к способам получения биокатализаторов на основе иммобилизованных ферментов, может быть использовано для удаления фосфорорганических соединений (ФОС) с различных поверхностей, в том числе кожных покровов, и последующей их детоксикации, а также для применения в качестве эффективных средств индивидуальной защиты

Изобретение относится к биотехнологии, а именно к иммобилизованным биокатализаторам, с помощью которых осуществляют биологическую очистку жиросодержащих сточных вод предприятий пищевой промышленности

Изобретение относится к биотехнологии и может быть использовано для деструкции фосфорорганических соединений в проточных системах
Наверх