Способ получения сорбента

 

Способ получения сорбента относится к получению селективных сорбентов для извлечения токсических, а также ценных компонентов из водных сред. Способ заключается в сорбции на макропористых анионитах полифункционального соединения с последующей его конденсацией с формальдегидом внутри пор анионита, при этом в качестве полифункционального соединения используют растворимые сульфиды или гидросульфиды металлов или газообразный сероводород, а в качестве анионитов - макропористые аниониты полимеризационного или поликонденсационного типа, содержащие группы четвертичного аммониевого основания и/или первичные и вторичные аминогруппы. Способ позволяет получить сорбент для селективного и эффективного извлечения ионов ртути и серебра из различных водных сред.

Изобретение относится к получению селективных сорбентов для извлечения токсических, а также ценных компонентов из водных сред.

Известны способы получения сорбентов по типу "змея в клетке" путем полимеризации и поликонденсации полифункциональных соединения внутри пористых катионов и полиамфолитов [1,2] Известен также способ получения сорбента путем сорбции на макропористом анионите Dowex-11 (анионит полимеризационного типа, содержащий сильноосновные группы четвертичного аммониевого основания) фенола в качестве противоиона с последующей его конденсацией с формальдегидом внутри пор анионита и получением сорбента по типу "змея в клетке". Этот способ выбран за прототип [3] Такой сорбент содержит как анионообменные, так и катионообменные группы и может быть использован для одновременного извлечения катионов и анионов из водных сред. Однако он не используется при извлечении таких металлов, как ртуть и серебро, являющихся как высокотоксичными, так и ценными веществами.

Задачей изобретения является получение ионообменного сорбента типа "змея в клетке", эффективного и селективного при извлечении ртути и серебра из водных сред.

Поставленная задача решается путем использования в качестве соединений, сорбируемых на анионите и затем конденсирующихся с формальдегидом, серусодержащих соединений.

Способ получения ионита заключается в сорбции на макропористом анионите сульфид-ионов, источником которых могут являться водорастворимые сульфиды и гидросульфиды металлов или газообразный сероводород, с последующей конденсацией сорбированных сульфид-ионов с формальдегидом внутри пор анионита по типу "змея в клетке".

В качестве анионита используют макропористые аниониты полимеризационного или поликонденсационного типа как сильноосновные, так и слабоосновные, т.е. содержащие как группы четвертичного аммонивого основания, так и/или первичные и вторичные аминогруппы, например АВ-17-10п (сильноосновный анионит полимеризационного типа); АН-221 (слабоосновный анионит полимеризационного типа); ЭДЭ-10-п (поликонденсационный эпоксиполиаминовый анионит, содержащий слабоосновные аминогруппы и до 10% сильноосновных групп) и другие.

Пример 1. Через 10 г сильноосновного анионита АВ-17-10п (стирол-дивинилбензольная матрица) со статической обменной емкостью (СОЕ), равной 2,75 мМ/г, пропускают 100 мл 0,1 н. водного раствора сульфида натрия для сорбции сульфид-ионов, анионит промывают водой и переносят в которую добавляют 60 мл смеси формалина и воды (1:1) и выдерживают при перемешивании без нагревания в течение 2 ч. Готовый продукт промывают водой, 3%-ной щелочью и снова водой. Содержание серы в готовом продукте составляет 1,20 мМ/г.

Пример 2. По примеру 1 через анионит АВ-17-10п пропускают 100 мл 0,1н. водного раствора гидросульфида натрия. Готовый продукт содержит 1,28 мМ/г серы и его СОЕ=3,34 мМ/г.

Пример 3. Через 10г слабоосновного анионита АН-221 (стирол-дивинилбензольная матрица, СОЕ=3б334мМ/г) пропускают смесь воздуха и сероводорода для сорбции (концентрация H2S 20 мг/л, скорость подачи газовой смеси 15 л/ч, время подачи смеси 1 ч 20 мин). Далее по примеру 1. Содержание серы в готовом продукте 1,00 мМ/г, СОЕ=2,52 мМ/г.

Пример 4. Через 10 г анионита ЭДЭ-10п, содержащего как слабо-, так и сильноосновные группы (эпоксиполиаминовая матрица, СОЕ=9,02 мМ/г пропускают газовоздушную смесь для сорбции сероводорода (концентрация H2S 40 мг/л, скорость подачи смеси 15 л/ч, время подачи 2 ч). Анионит переносят в реакционную колбу и по примеру 1 обрабатывают 120 мл смеси формалина и воды и промывают. Содержание серы в готовом продукте 2,68 мМ/г, СОЕ 6,89 мМ/г.

Синтезированные сорбенты были испытаны на сорбцию ртути из хлоридных сред при pH 1 2 и на сорбцию серебра из азотнокислых сред при pH 1 2. Коэффициенты распределения, определенные по изотопам Ag и Hg на фоне микроконцентраций (1 мг/л) неактивных Ag и Hg, составили для Hg 1140 2240 и для Ag 4720 6220 в зависимости от типа исходного ионита. Максимальные величины емкости по ртути составили для сорбентов по примерам 1 и 2 2,0 мМ/г, для сорбентов по примерам 3 и 4 1,9 мМ/г и 1,8 мМ/г соответственно. Максимальные величины емкости по серебру для сорбентов по примерам 1 и 2 составили 1,2 мМ/г, для сорбентов по примерам 3 и 4- 1,0 мМ/г и 1,4 мМ/г соответственно.

Синтезированные сорбенты могут быть регенерированы способами, рекомендованными для ионитов с метилтиольными группами [4]

Формула изобретения

Способ получения сорбента путем сорбции на макропористых анионитах полифункционального соедиения с последующей его конденсацией с формальдегидом в порах анионита, отличающийся тем, что в качестве полифункционального соединения используют водорастворимые сульфиды и гидросульфиды металлов или сероводород, а в качестве анионитов используют макропористые аниониты полимеризационного или поликонденсационного типа, содержащие группы четвертичного аммониевого основания и/или первичные и вторичные аминогруппы.



 

Похожие патенты:
Изобретение относится к получению низкоосновных макропористых анионитов полимеризационного типа, которые могут быть использованы в различных реакциях ионного обмена для водоподготовительных установок атомных и тепловых электростанций, в бытовых фильтрах, для очистки промышленных стоков и газовых выбросов
Изобретение относится к производству хемосорбционных волокон методом полиминералогичных превращений волокон на основе карбоцепных полимеров, в частности на основе полиакрилонитрила, сополимеров полиакрилонитрила или поливинилхлорида

Изобретение относится к технологии получения хроматографических материалов, применяемых для изучения химического состава биологических объектов в химической, фармацевтической и пищевой промышленности

Изобретение относится к области химической технологии изготовления волокнистых ионообменных материалов и может быть использовано в атомной энергетике для контроля и очистки водного теплоносителя основного и вспомогательного контуров ядерной энергетической установки

Изобретение относится к области очистки сточных вод и газовых выбросов и предназначено, в частности, для улавливания отработанных соединений хрома-VI, азотной кислоты, окислов азота

Изобретение относится к области высокомолекулярных соединений, а именно к получению полимерных биокатализаторов для разложения мочевины в водных растворах путем иммобилизации фермента уреазы на полимерном носителе

Изобретение относится к способам получения катионитов методом сульфирования, а также к методам утилизации жидких отходов нефтехимических производств, в частности нефлешлама очистки сточных вод процесса совместного получения ацетилена и этилена высокотемпературным гомогенным пиролизом легких нефтепродуктов и отработанной серной кислоты, содержащей органические примеси [1]

Изобретение относится к химии полимеров и позволяет создать полимерный реагент с повышенной способностью к ковалентной иммобилизации сывороточного альбумина (94-110 мг белка на 1 г полимерного реагента), что достигается новой структурой вещества общей формулы {-f СН2 - СН (СбН4СН2 NCS)uf СН2 - -СН (СеН4 CH2CI) СН2 - СН (CeHsHzгде х 46-54 мол.%, у 3-12 мол.%

Изобретение относится к получению ионитов, содержащих меркаптогруппу

Изобретение относится к области химии полимеров и позволяет получить хелатообразующий ионит, селективный по отношению к ионам палладия, обладающий высокой емкостью (69,9 - 101,3 мг/г) по ионам палладия и низкой емкостью (0,20 - 0,31 мг/г) по ионам меди при их совместном присутствии, что достигается обработкой 1 моль хлорметилированного сополимера стирола и дивинилбензола 1 - 2 моль роданина общей формулы H<SB POS="POST">2</SB>C(O)<SP POS="POST">5</SP>-NH-C=S при 80 - 110°С в течение 10 - 15 ч в присутствии триэтаноламина

Изобретение относится к способу получения серусодержащего сорбента и может быть использовано для извлечения меди, свинца, серебра, ртути в гидрометаллургии и химической технологии

Изобретение относится к области химии и технологии полимеров и позволяет получать резиновые смеси с улучшенными технологическими и физико-химическими свойствами, что достигается получением серусодержащего полистирола с бензтиазолилполисульфидными группами без низкомолекулярпримесей нагреванием полистирола при 200-240 С с серусодержащим реагентом, в качестве которого используют смесь серы и дибензтиазолилсульфида и процесс проводят в присутствии окиси цинка при массовом соотношении полистирола, серы, дибензтиазолилсульфида и окиси цинка 100: :(5-7):(5-8):5

Изобретение относится к получению улучшенных материалов на битумной основе и может быть использовано при производстве дорожных, кровельных гидроизоляционных покрытий
Наверх