Способ контроля размеров трещины в образце горных пород

 

Изобретение относится к горной промышленности и позволяет повысить точность контроля размеров трещины, формируемой пластичным флюидом в образце. В образце горной породы перпендикулярно одной из граней сверлят отверстие, через которое прорезают инициирующую щель. В отверстии устанавливают переходник-герметизатор, к которому подсоединяют трубку, и подают через нее флюид с удельным электросопротивлением, зависящим от давления. Под действием давления флюида образуется трещина. Образец устанавливают на металлический лист, подключенный к источнику переменного напряжения. Металлическую трубку подключают к амплитудному детектору с индикатором. По поверхности образца перемещают источник упругих колебаний и одновременно измеряют уровень сигнала с амплитудного детектора. На поверхности образца определяют изолинию, на которой уровень сигнала равен 0,5 его максимального значения, и считают ее проекцией границы трещины на поверхность образца 1. 1 з.п. ф-лы, 2 ил.

Изобретение относится к горной промышленности и предназначено для исследования трещинообразования в образцах горных пород.

Известен способ контроля размеров трещин в образцах горных пород, включающий создание в образце трещины гидроразрывом электропроводящим флюидом, введение в него подключенного к источнику переменного напряжения электрода и определение границы трещины по току смещения, измеряемого в различных токах с помощью датчика (а.с. СССР N 1425324, E 21 C 39/00, 1988).

Этот способ позволяет определять зону, занятую флюидом. Однако его применение для контроля размеров трещины в случае, если фронт флюида существенно отстает от границы разрыва, приводит к недопустимо большим погрешностям.

В качестве прототипа принят "Способ контроля размеров трещин в образцах горных пород", включающий формирование трещины гидроразрывом электропроводящим флюидом, облучение образца электромагнитным полем и определение размеров трещин по напряжению на введенном во флюид электроде (а.с. СССР N 1293480, кл. G 01 B 7/32, E 21 C 39/00, 1987).

Этот способ не позволяет контролировать размеры трещины при существенном отставании фронта флюида от границы разрыва. Он не предназначен для определения проекции границы трещины на поверхность образца.

Задача изобретения заключается в повышении точности определения проекции трещины на поверхность образца при условии существенного отставания фронта флюида от границы разрыва.

Задача решается тем, что согласно прототипу, включающему формирование трещины гидроразрывом электропроводящим флюидом, облучение образца электромагнитным полем и измерение напряжения на введенном во флюид электроде, по которому определяют размеры трещины, после формирования трещины возбуждают в образце упругие колебания с помощью источника, перемещаемого по поверхности образца, выделяют огибающую измеряемого напряжения и по изменению ее уровня определяют границы трещины, при этом для гидроразрыва используют флюид с удельным электросопротивлением, зависящим от давления, причем используют флюид с добавками графита.

Под действием источника упругих волн одна из поверхностей трещины начинает колебаться и передавать эти колебания флюиду, изменяя соответствующим образом его удельное электросопротивление, что приводит к модуляции принимаемого сигнала. Так как изменение принимаемого сигнала обусловлено колебанием поверхности трещины, то в отличие от прототипа контроль осуществляется за самой трещиной, а не за зоной, занятой флюидом, что при условии существенного отставания фронта флюида от границы разрыва повышает точность определения проекции трещины на поверхность образца.

На фиг. 1 представлена схема реализации способа; на фиг. 2 зависимость относительного значения амплитуды принимаемого сигнала от расстояния источника упругих колебаний до оси отверстия, через которое формируют трещину.

Способ реализуется следующим образом. В образце 1 горной породы (фиг. 1) перпендикулярно одной из его граней сверлят отверстие 2, в забойной части которого специальным устройством прорезают инициирующую щель 3 в плоскости, перпендикулярной оси отверстия. В отверстии 2 устанавливают с использованием клеющего вещества переходник-герметизатор 4. К переходнику-герметизатору 4 подсоединяют металлическую трубку 5 и подают через нее флюид 6 с зависящим от давления удельным электросопротивлением, который, раздвигая поверхности инициирующей щели 3, образует трещину 7.

Для контроля размеров трещины 7 образец 1 устанавливают на металлический лист 8, подключенный к источнику 9 переменного напряжения. Металлическую трубку 5 подключают к амплитудному детектору 10 с индикатором. По поверхности образца 1 со стороны, противоположной металлическому листу 8, перемещают источник 11 упругих колебаний и одновременно измеряют уровень сигнала с амплитудного детектора 10. На поверхности образца 1 определяют изолинию, на которой A/Aм 0,5, где A текущее значение уровня сигнала после амплитудного детектора; Aм максимальное значение уровня сигнала после амплитудного детектора, соответствующее расположению источника упругих колебаний в зоне, непосредственно примыкающей к отверстию 2.

Отмеченную изолинию считают проекцией границы трещины 7 на поверхность образца 1.

Зависимость относительного значения сигнала после амплитудного детектора 10 от расстояния источника 11 упругих колебаний до оси отверстия 2 представлена на фиг. 2, на которой обозначены три зоны (I, II, III) вертикальными пунктирными линиями. Зона I соответствует области, в которой находится трещина. Зона II ограничена областью, непосредственно прилегающей к границе трещины. Зона III соответствует области в которой трещина отсутствует.

Если источник 11 упругих колебаний находится в зоне I (над трещиной), то поверхности трещины 7 колеблются с максимальной амплитудой и уровень сигнала с амплитудного детектора 10 имеет максимальное значение (с небольшим уменьшением при перемещении источника 11 упругих колебаний от центра к границе трещины).

При прохождении источника 11 упругих колебаний зоны II, например, из I в III, уровень сигнала с амплитудного детектора 10 сильно изменяется (уменьшается до некоторого минимального значения). Ширина зоны II определяется в основном расстоянием трещины до поверхности образца. При этом экспериментально установлено, что когда источник 11 упругих колебаний находится над границей трещины 7, уровень сигнала с амплитудного детектора 10 соответствует значению A/Aм 0,5.

Изобретение разработано с целью проведения исследований механики разрыва горных пород пластичными флюидами, для которых легче раздвигать поверхности формируемой трещины, чем проникать в нее. Отметим, что пластичные флюиды применяют в методах отделения блоков от массивов для снижения энергозатрат и расходуемого материала.

Значение предлагаемого способа для горнодобывающей промышленности состоит в том, что результаты исследований процесса флюидоразрыва, полученные с его помощью, позволяют более правильно проводить технологические работы в рудниках и шахтах, создавать новое оборудование по разрушению горных пород, образовывать искусственные трещины с целью разгрузки горных массивов от высоких напряжений, разрабатывать способы добычи строительного камня.

Формула изобретения

1. Способ контроля размеров трещины в образце горных пород, включающий формирование трещины гидроразрывом электропроводящим флюидом, облучение образца электромагнитным полем и измерение напряжения на введенном во флюид электроде, по которому определяют размеры трещины, отличающийся тем, что после формирования трещины возбуждают в образце упругие колебания с помощью источника, перемещаемого по поверхности образца, выделяют огибающую измеряемого напряжения и по изменению ее уровня определяют границы трещины, при этом для гидроразрыва используют флюид с удельным электросопротивлением, зависящим от давления.

2. Способ по п. 1, отличающийся тем, что используют флюид с добавками графита.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано при измерении площади касания твердых тел, например контактов прерывателей и выключателей и т.п

Изобретение относится к измерительной технике и предназначено для контроля целостности проводящих покрытий на диэлектриках

Изобретение относится к измерению площади электропроводного объекта и может быть использовано для определения площади поверхности образцов после испытания их на ударный изгиб

Изобретение относится к области измерительной техники и может быть применено при измерении площадей тел любой конфигурации , оптической прозрачности и электропроводности

Изобретение относится к измерительной технике и имеет целью упрощение способа измерения площади поверхности деталей сложной формы

Изобретение относится к измерительной технике, в частности касается измерения площади электропроводных деталей, погруженных в гальваническую ванну при электрохимическом осаждении покрытий в процессе металлизации Сущность изобретения: измеритель содержит ванную 1 с электролитом, в которой с помощью штанг 3 погружены электрод 4 и изделие 5, источник 6 тока, преобразователь 7 напряжениенапряжение, преобразователь 8 ток-напряжение, делитель 9 напряжения, сумматор 10, генератор 11 уставки, масштабный усилитель 12, квадратор 13, индикатор 14 площади, перемножитель 15, блок 16 измерения удельной проводимости и кондуктометрический первичный измерительный преобразователь 17

Изобретение относится к измерительной технике, к определению фактической площади контакта двух контактирующих об: разцов

Изобретение относится к контрольно-измерительной технике и может быть использовано при изготовлении печатных плат

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке месторождений

Изобретение относится к измерительной технике, в частности к устройствам для измерения и записи относительных смещений пород кровли и почвы в выработанном пространстве шахт

Изобретение относится к горному делу и может быть использовано для оценки степени опасности участков горных выработок по динамическим явлениям типа горных ударов или внезапных выбросов угля, породы и газа путем регистрации импульсного излучения электромагнитных или упругих колебаний от образующихся под действием предельных напряжений трещин разрушения

Изобретение относится к горному делу и может быть использовано для определения максимального горизонтального напряжения в продуктивных пластах нефтяных и газовых месторождений, что позволит выбирать оптимальную технологию бурения и эксплуатации скважин

Изобретение относится к ультразвуковым способам определения напряженного состояния массивов и может быть использовано для определения главных напряжений в массиве на участках, представленных породами блочного строения
Изобретение относится к гидрогеологии, технике и гидромеханике и предназначено для организации и проведения контроля тектогенных напряжений в горном массиве на основе наблюдений за режимом подземных вод в целях прогнозирования и предупреждения землетрясений

Изобретение относится к горной промышленности и предназначено для повышения качества упрочняемого массива посредством применения непрерывного контроля процесса инъектирования

Изобретение относится к испытательной технике, к испытаниям горных пород, грунтов в полевых условиях

Изобретение относится к горной промышленности и может быть использовано при моделировании объемных задач, связанных с напряженным состоянием массива горных пород

Изобретение относится к строительству и предназначено для определения прочности грунтов на сдвиг на оползневых склонах при проведении крупномасштабных инженерно-геологических (оползневых) съемок на ранних стадиях проектирования для обоснования схем инженерной защиты территории от опасных геологических явлений с прогнозами оползней
Наверх