Композиция для получения ферромагнитного ионообменника

 

Изобретение относится к неорганической химии, а именно к композициям для получения ферромагнитного ионообменника, к области получения неорганических ферромагнитных материалов и может найти применение в качестве магнитоуправляемых сорбентов при очистке вязких и твердых сред (почвы, ила и т.д.), а также для интенсификации процессов очистки высокомутных растворов от ионных примесей. Согласно изобретению предлагается композиция для получения ферромагнитного ионообменника, включающая ионообменный материал и магнетит, а в качестве первого используют природный клиноптилолит фракции 0,-5-0,25 мм. Магнетит используют свежеосажденный, полученный путем перемешивания соли железа II и железа III в соотношении 1:2 в виде 2,7-3,1%-ного р-ра и щелочи. В качестве щелочи используют 17-20%-ный р-р гидроксида натрия или концентрированный аммиак. В качестве соли железа (II) используют соль Мора. Получают сорбционный материал, хорошо отделяющийся магнитом от других компонентов. 3 з.п. ф-лы, 1 табл.

Изобретение относится к неорганической химии, а именно к области получения неорганических ферромагнитных материалов, и может найти применение в качестве магнитоуправляемых сорбентов при очистке вязких и твердых сред (почвы, ила и т.д.), а также для интенсификации процессов очистки высокомутных растворов от ионных примесей.

Известен композиционный материал с частицами размером 0,001-0,5 мм, содержащий в своем составе 2-40 об. ферро- или ферримагнитного материала и 98-60 об. синтетического цеолита. В качестве ферро- или ферримагнитного материала используется магнитный Fe3O4, -оксид железа (Fe2O3), феррит формулы XOFe2O3, где X - металл, являющийся Zn, Mn, Cu, Fe, Ni. Указанный материла диспергирован в немагнитном материале, т.е. магнитоактивную фазу в качестве центров кристаллизации вводят в реакционную смесь при синтезе цеолитов [1] Указанный материал, как правило, получают в виде крупных гранул, что отрицательно сказывается на кинетике процессов, например, при очистке вод. Более того, способ его ферритизации предназначен для использования в процессе синтеза искусственных цеолитов, что ограничивает его применение для намагничивания природных цеолитов.

Известен ферромагнитный ионообменник, получаемый последовательной обработкой предварительно набухшего анионообменника растворами, содержащими анионообменные комплексы Fe2+ и Fe3+ типа FeCl-3 и FeCl-4, и 12-17%-ным раствором щелочи. В результате такой обработки сохраняется анионообменная емкость, а сорбент приобретает дополнительные магнитные свойства. Данные по магнитной восприимчивости в работе не приводятся.

Соотношение компонентов в этом анионообменнике в вес. следующие: соли железа II и железа III 17 анионообменник 50 раствор щелочи 33 [2] Поскольку для получения указанного ионообменника используется дорогостоящая синтетическая ионообменная смола и требуются значительные расходы щелочи и солей железа, получаемый ионообменник весьма дорог и не находит широкого практического применения.

Задачей настоящего изобретения является создание нового ферромагнитного ионообменника на основе природных материалов, обладающего хорошими ионообменными свойствами и высокой магнитной восприимчивостью и позволяющего решать задачи извлечения радионуклидов, тяжелых металлов из вязких и твердых сред, интенсифицировать процессы очистки вязких, высокомутных растворов.

Согласно изобретению предлагается композиция для получения ферромагнитного ионообменника, включающая ионообменный материал и магнетит, в которой в качестве ионообменного материала используют клиноптилолит фракции 0,05-0,25 мм при следующих соотношениях компонентов (мас.): клиноптилолит фракции 0,05-0,25 мм 83-87 магнетит 13-17 В композиции используют свежеосажденный магнетит, полученный путем перемешивания соли железа II и железа III в соотношении 1:2 в виде 2,7-3,1%-ного раствора и щелочи.

В качестве щелочи используют 17-20%-ный раствор гидроксида натрия или концентрированный аммиак.

В качестве соли железа II используют соль Мора.

Природный клиноптилолит (клиноптилолитовый туф) выпускается промышленностью по ТУ 113-12-71-92. Выбор фракционного состава 0,05-0,25 мм продиктован лучшей способностью к намагничиванию, чем пыль и более крупные фракции и удовлетворительными кинетическими свойствами.

Нижеприведенные примеры иллюстрируют заявленное изобретение.

Пример 1. В реакционную емкость сливают последовательно соли закисного и окисного железа при их соотношении 1:2 так, чтобы суммарная концентрация ионов железа составляла 2,7-3,1% и нагревают до кипения, при перемешивании добавляют 17-20%-ный раствор гидроксида натрия. Возможно использование концентрированного аммиака. PH раствора составляет 7-10. К полученной густой черной массе магнетита добавляют клиноптилолит требуемого фракционного состава (зернением 0,05-0,25 мм) и количества. Соотношение массы магнетита к массе клиноптилолита должно составлять 1:5-7. Смесь хорошо перемешивают в течение 10-15 мин, нагревают до кипения и выдерживают при этой температуре 1,5-2 часа. По истечении указанного времени смесь охлаждают, после чего избыток магнетита с раствором удаляют декантацией. Сорбент промывают подщелоченной (pH 8-9) водой и сушат на воздухе. Получают сорбционный материал темно-коричневого или черного цвета, хорошо отделяющийся магнитом от других компонентов как из раствора, так и сухой смеси.

Пример 2. Сливают 50 мл 3,9%-ного раствора смеси соли Мора (0,28 г FeII) и 100 мл 2,7%-ного хлорного железа (0,56 г Fe III), нагревают до кипения, после чего приливают 12,5 мл 20%-ного раствора гидроксида натрия (2,5 г). К полученной массе магнетита в количестве 1 г (17 мас.) прибавляют 5 г клиноптилолита (83 мас.) фракции 0,1-0,25 мл, нагревают до кипения, выдерживают при этой температуре 1,5 часа, затем охлаждают, отделяют магнетит, промывают водой и сушат.

Получают порошок черного цвета с магнитной восприимчивостью 1070010-6 ед. CGSM1, коэффициент распределения по стронцию 3500 (время контакта 30 суток).

Примеры 3-10 сведены в таблицу, где указаны условия получения и свойства ферромагнитного ионообменника. Осаждение магнетита щелочью при комнатной температуре снижает величину магнитной восприимчивости обработанного клиноптилолита (пример 3). Концентрация солей железа ниже 2,7% нецелесообразна из-за низкого выхода магнетита и, как следствие, невысокой намагниченности образцов. Повышение концентрации до 14-29% приводит к снижению магнитной восприимчивости (примеры 6,7). Увеличение соотношения клиноптилолита/магнетита выше 7 также приводит к снижению магнитной восприимчивости (см. пр. 4,5). Определение статической обменной емкости по Sr+2 (COE мг-экв./г) проводили из раствора 0,01 H нитрата стронция при соотношении объема раствора и массы сорбента (V/m), равном 200, и времени контакта двое суток.

Формула изобретения

1. Композиция для получения ферромагнитного ионообменника, содержащая ионообменный материал, смесь солей железа II и железа III в соотношении 1 2 и гидроксид натрия, отличающаяся тем, что в качестве ионообменного материала она содержит клиноптилолит фракции 0,05 0,25 мм при следующих соотношениях компонентов, мас.

Клиноптилолит фракции 0,05 0,25 мм 66 68
Смесь солей железа II и железа III в соотношении 1 2 в виде 2,7 - 3,1% -ного раствора 9 12
Гидроксид натрия в виде 17 20%-ного раствора 22 23
2. Композиция по п. 1, отличающаяся тем, что в качестве смеси солей железа используют свежеосажденный магнетит, полученный путем перемешивания 2,7 3,1%-ного раствора соли железа II и железа III в соотношении 1 2 и щелочи.

3. Композиция по п. 2, отличающаяся тем, что в качестве щелочи используют 17 20%-ный раствор гидроксида натрия или концентрированный аммиак.

4. Композиция по пп. 1 и 2, отличающаяся тем, что в качестве соли железа II используют соль Мора, или сернокислое железо, или хлористое железо.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к очистке сточных вод, а более конкретно к очистке сточных вод сополимеров стирола, полученных методом блочно-суспензионной полимеризации и может быть использовано в химической промышленности в производстве полистирольных пластиков

Изобретение относится к области дезинфекции и стерилизации воды с помощью УФ - излучения, а именно для источников холодной воды

Изобретение относится к обработке текучих сред, например питьевой воды, на судах и на водоподъемных городских станциях (водопровод) и позволяет повысить качество воды, улучшить экологию и безопасность окружающей среды

Изобретение относится к обработке текучих сред, например питьевой воды, на судах и на водоподъемных городских станциях (водопровод) и позволяет повысить качество воды, улучшить экологию и безопасность окружающей среды

Изобретение относится к очистке сточных вод, в частности гальванических производств, и может быть использовано для очистки сточных вод от хрома

Изобретение относится к области экологии и охраны здоровья человека

Изобретение относится к способам очистки воды и может быть использовано для очистки водоемов от загрязнений ионами металлов и неорганическими кислотами

Изобретение относится к способам извлечения серебра из азотно- и сернокислых растворов и может быть использовано в технологии или аналитической практике для максимально эффективного извлечения серебра из сложных солевых систем

Изобретение относится к химии, в частности к способам разделения электролитов с одноименными ионами с использованием ионообменных смол

Изобретение относится к металлургии цветных металлов, конкретно к способам извлечения металлов из растворов, и может быть использовано для утилизации отработанного медного электролита с высоким содержанием примесей

Изобретение относится к способам и устройствам для сорбционной очистки виноматериалов, вин, коньячных спиртов и виноградных соков от катионов металлов (Fe2+, Ca2+, Mg2+, K+ и др.) и радиоактивных нуклидов (Сs134, Cs137, Sr90 и др.) и может быть использовано в виноделии и пищевой промышленности

Изобретение относится к гидрометаллургии, а именно к способам извлечения урана, и может быть использовано для концентрирования урана из растворов выщелачивания природного сырья

Изобретение относится к области изготовления лабораторных, а именно аналитических аэрозольных сорбционных фильтров, служащих для улавливания вредных примесей (например, полициклических ароматических углеводородов, ртути, фтористого водорода и т.п.) и последующего их анализа

Изобретение относится к устройствам для очистки жидкости методом физико-химической адсорбции и может найти применение в бытовых условиях для очистки водопроводной воды, в сельской местности для получения питьевой воды, в пищевой, химической и фотопромышленности и в других областях технологии, где по условиям техпроцесса необходимо иметь чистую воду, свободную от солей металлов и органических растворенных включений

Изобретение относится к области необратимого связывания белков на сетчатых полиэлектролитах с сохранением биологической активности и может найти применение как один из способов получения высококонценитрированных иммобилизованных белков с сохранением биологической активности

Изобретение относится к технике очистки воды и водных растворов от примесей, находящихся в виде ионов, с помощью ионообменных материалов-ионитов, и может быть использовано в ионитных фильтрах, применяющихся в энергетике, химической, пищевой и других отраслях промышленности
Наверх