Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе и гиперзвуковой прямоточный воздушно-реактивный двигатель (варианты)

 

Изобретение относится к авиационному двигателестроению, а именно, к гиперзвуковым прямоточным воздушно-реактивным двигателям. Поставленная задача - повышение полноты сгорания и улучшение стабилизации процесса горения в сверхзвуковой камере путем интенсификации смешения топлива, осуществляется благодаря способу организации горения, по которому подачу топлива с молекулярным весом меньше воздуха, осуществляют преимущественно вблизи вогнутой поверхности камеры сгорания, а подачу топлива с молекулярным весом больше воздуха - вблизи выпуклой поверхности камеры сгорания. Камера сгорания выполнена с криволинейным участком, плавно переходящим в прямолинейный участок, ось которого параллельна оси двигателя. При этом форсунки расположены с переменным шагом по высоте поперечного сечения криволинейного участка камеры, шаг между форсунками, для двигателей с топливом, молекулярный вес которого меньше воздуха, уменьшается вблизи вогнутой поверхности криволинейного участка камеры, а для двигателей с топливом, молекулярный вес которого больше воздуха, уменьшается вблизи выпуклой поверхности криволинейного участка камеры. 4 с.п. ф-лы,3 ил.

Изобретение относится к авиационному двигателестроению, а именно, к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД).

Известен ГПВРД, содержащий участок внешне-внутреннего сжатия (воздухозаборник), прямую сверхзвуковую камеру сгорания постоянного сечения с инжектором для впрыска горючего, и сопло, причем с целью эффективного смешения топлива со сверхзвуковым потоком воздуха, подача горючего в камеру сгорания осуществляется через сверхзвуковые инжекторы, равномерно расположенные по высоте в теневой части пилонов / Патент США 4903480, FO2K 7/10, 1988/.

Недостатком данного двигателя является то, что сверхзвуковая камера сгорания выполнена прямой и для получения гомогенной смеси при сверхзвуковой скорости потока в последней требуется значительное увеличение его длины (20-25 калибров высоты) даже при наличии чередования углов смещений осей инжекторов, равномерно расположенных на теневой части пилонов. Кроме того при низких плотностях рабочего тела в камере (<0,1 атм) проблема смещения еще более усугубится. В итоге это отрицательно скажется на характеристики двигателя в целом.

За прототипом выбран гиперзвуковой прямоточный воздушно-реактивный двигатель, содержащий воздухозаборник, прямую камеру сгорания с уступами на начальном участке и расположенными в ней инжекторами, а также сопло. Причем инжекторы расположены на верхней и нижней поверхности стенок камеры таким образом, чтобы при впрыске горючее организовать зоны рециркуляции за уступами для эффективного смешения горючего с воздухом./Патент США 5085048, FO2K 7/10,1990/ Недостатком прототипа является то, что зоны рециркуляции горючего и воздуха находятся в прямой камере сгорания, и при сверхзвуковых скоростях потока воздуха время пребывания горючего в камере резко сокращается, что делает проблематичным эффективное смешения горючего с окислителем (кислородом). Кроме того наличие таких зон за уступами, в которых определенным образом впрыскивается горючее для эффективного их формирования, в случае воспламенения последнего приводит к интенсивному тепловыделению с перестройкой течения от сверхзвукового к дозвуковому по всей длине камеры сгорания.

Задачей изобретения является повышение полноты сгорания и улучшения стабилизации процесса горения в сверхзвуковой камере путем интенсификации смешения топлива при существенном сокращении длины камеры сгорания.

Поставленная задача достигается благодаря способу организации горения топлива в ГПВРД, по которому подачу топлива с молекулярным весом меньше воздуха, осуществляют преимущественно вблизи вогнутой поверхности камеры сгорания. Камера сгорания выполнена из криволинейного участка, плавно переходящего в прямолинейный с осью, параллельной оси двигателя, при этом форсунки расположены с переменным шагом по высоте поперечного сечения криволинейного участка камеры. Причем шаг между форсунками, для двигателей с топливом, молекулярный вес которого меньше воздуха, уменьшается вблизи вогнутой поверхности криволинейного участка камеры.

ВАРИАНТ.

Способ организации горения заключается в подаче топлива с молекулярным весом больше веса воздуха (керосин, бороорганическое топливо), в большем количестве вблизи выпуклой поверхности камеры сгорания, где форсунки расположены в начале криволинейного участка с переменным шагом по высоте его поперечного сечения, причем шаг между форсунками уменьшается вблизи выпуклой поверхности криволинейного участка.

Указанные признаки не выявлены в других технических решениях при изучении уровня данной области техники и, следовательно решение является новым и имеет изобретательский уровень.

Предлагаемое новое техническое решение промышленно применимо в авиационной промышленности.

На фиг. 1 изображена схема газодинамического тракта ГПВРД, работающего на топливе, молекулярный вес которого меньше воздуха; на фиг. 2 поперечное сечение на фиг. 1; на фиг.3 поперечное сечение криволинейного участка камеры сгорания ГПВРД, работающего на топливе, молекулярный вес которого больше воздуха (вариант).

Предлагаемый способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе основан на том, что топлива с различными молекулярными весами, подаваемые через форсунки в сверхзвуковой поток воздуха, под воздействием центробежных сил, возникающих в криволинейном канале, подвергаются различному радиальному перемещению. Это способствует интенсификации перемешивания топлива с воздухом и его сгоранию.

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник 1, сверхзвуковую камеру сгорания 2 с криволинейным участком 3 плавно переходящий в прямолинейный участок 4 и сопло 5. Ось симметрии прямолинейного участка 4 расположена параллельно оси двигателя. Форсунки 6 расположены в начале криволинейного участка 3 с переменным шагом по высоте его поперечного сечения.

Для ГПВРД (см. фиг. 2), работающего на топливе, молекулярный вес которого меньше воздуха, шаг между форсунками 6 уменьшается вблизи вогнутой поверхности криволинейного участка и увеличивается к периферии, т.е. в сторону выпуклой поверхности криволинейного участка канала.

ВАРИАНТ.

Для ГПВРД (см. фиг. 3), работающего на топливе, молекулярный вес которого больше воздуха, шаг между форсунками 6 уменьшается вблизи выпуклой поверхности криволинейного участка и увеличивается к периферии, т.е. в сторону вогнутой поверхности криволинейного участка канала.

Способ осуществляется следующим образом.

Топливо, имеющее молекулярный вес меньше воздуха впрыскивают в поток в начале криволинейного участка камеры преимущественно вблизи вогнутой стенки. Топливо смещается как вниз по потоку, так и в радиальном направлении в сторону выпуклой стенки. Стадия перемещения двух сред в противоположном направлении приводит к интенсивному смесеобразованию и сжигают топлива с высокой полнотой сгорания.

ВАРИАНТ.

Топливо, имеющее молекулярный вес дольше воздуха впрыскивают в поток в начале криволинейного участка камеры преимущественно вблизи выпуклой стенки. Под воздействием центробежных сил топливо получает радиальное перемещение в сторону вогнутой стенки камеры, а воздух стремится занять освободившееся место вблизи выпуклой стенки. Происходит перемешивание потоков и интенсивное сгорание топлива.

Использование такого способа интенсификации смешения топлива в сверхзвуковой камере сгорания экспериментальной модели ГПВРД позволило интенсивно сжигать топливо по всему объему камеры при числах Маха набегающего на модель высокоэнтальпийного воздуха равным М 8-13.

Так, например, при подаче газообразного водорода в камеру сгорания с соотношением длин криволинейного и прямолинейного участков камеры, как 1,7:1 было реализовано устойчивое горение водорода по всему объему камеры, начиная от места, расположенного вниз по потоку от форсунок на 10-15 мм, и до конца прямолинейного участка камеры сгорания в широком диапазоне параметров торможения набегающего потока P=(150-500) бар, Т=(1900-2800)К.

Формула изобретения

1. Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе, заключающийся в подаче топлива и интенсификации его сжигания в камере, отличающийся тем, что подачу топлива с молекулярной массой меньше воздуха осуществляют в большем количестве вблизи вогнутой поверхности камеры сгорания.

2. Гиперзвуковой прямоточный воздушно-реактивный двигатель, содержащий воздухозаборник, камеру сгорания с топливными форсунками и сопло, отличающийся тем, что камера сгорания содержит криволинейный участок с форсунками, плавно переходящий в прямолинейный, ось которого расположена параллельно оси двигателя, при этом форсунки расположены в начале криволинейного участка с переменным шагом по высоте его поперечного сечения, причем шаг между форсунками уменьшается вблизи вогнутой поверхности криволинейного участка.

3. Способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе, заключающийся в подаче топлива и интенсификации его сжигания в камере, отличающийся тем, что подачу топлива с молекулярной массой больше воздуха осуществляют в большем количестве вблизи выпуклой поверхности камеры сгорания.

4. Гиперзвуковой прямоточный воздушно-реактивный двигатель, содержащий воздухозаборник, камеру сгорания с топливными форсунками и сопло, отличающийся тем, что камера сгорания содержит криволинейный участок с форсунками, плавно переходящий в прямолинейный, ось которого расположена параллельно оси двигателя, при этом форсунки расположены в начале криволинейного участка с переменным шагом по высоте его поперечного сечения, причем шаг между форсунками уменьшается вблизи выпуклой поверхности криволинейного участка.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к классу ВРД условно называемому "пульсирующими детонационными двигателями" (ПДД)

Изобретение относится к способам функционирования сверхзвуковых пульсирующих детонационных прямоточных воздушно-реактивных двигателей, преимущественно при полете с числом Маха больше 6. Способ функционирования сверхзвукового пульсирующего детонационного прямоточного воздушно-реактивного двигателя, при котором подают топливо в основную сверхзвуковую камеру сгорания и осуществляют в ней пульсирующий процесс, для чего используют предкамеру, которую устанавливают на входе в основную сверхзвуковую камеру. Подают в предкамеру часть топлива, получают пульсирующий поток и накладывают его на поток в основной сверхзвуковой камере сгорания. Предкамеру выполняют в виде золотниковой камеры с постоянным объемом сгорания топлива, количество рабочих полостей которой выбирают в соответствии с требуемой частотой пульсаций в основной сверхзвуковой камере сгорания. Поток из предкамеры разделяют и направляют в основную сверхзвуковую камеру в осевом и радиальных направлениях. Изобретение обеспечивает стабильное горение в сверхзвуковом потоке авиационного топлива - керосина без окислительного газа, без предварительного прогрева воздуха. 2 ил.

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике с затупленным центральным телом. Далее подают в поток топливо, закручивают образующийся топливовоздушный поток хорошо перемешанной горючей смеси, тормозят до дозвуковой осевой компоненты скорости, инициируют воспламенение закрученной хорошо перемешанной топливовоздушной смеси и сжигают в спиновой детонационной волне. Детонационные и ударные волны, распространяющиеся против потока, гасят набегающим сверхзвуковым потоком топливовоздушной смеси. Образующиеся при сжигании продукты сгорания направляют на создание реактивной тяги двигателя. Прямоточный воздушно-реактивный двигатель со спиновой детонационной волной для высокоскоростных полетов содержит сверхзвуковой двухступенчатый воздухозаборник с затупленным центральным телом, систему слива энтропийного и пограничных слоев, топливные пилоны с соплами для подачи топлива в набегающий воздушный поток, венцы которых выполнены и расположены так, что продолжают торможение и закручивают образующийся топливовоздушный поток, кольцевой решеточный гаситель детонационных и ударных волн, осесимметричное кольцевое сопло, имеющее расширяющуюся внешнюю обечайку и центральное тело с донным срезом. Кольцевой решеточный гаситель детонационных и ударных волн содержит кольцевые решетчатые перегородки, образующие каналы, для торможения и поворота топливовоздушного потока до дозвуковой осевой компоненты скорости с сохранением сверхзвуковой скорости в каналах гасителя. На выходе гасителя расположена кольцевая детонационная камера сгорания, начальный внутренний радиус которой меньше внутреннего радиуса колец гасителя. На выходе камеры сгорания расположена кольцевая решетка, спрямляющая выходящий поток. Изобретение направлено на интенсификацию скорости химических реакций горения и энерговыделения за счет спинового детонационного горения хорошо перемешанной топливовоздушной смеси. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к аэрокосмическим двигателям. Детонационно-дефлаграционный пульсирующий прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, систему непрерывной подачи топлива, решеточный пластинчатый гаситель детонационных волн, расположенный так, что в него поступает хорошо перемешанная горючая смесь, камеру сгорания и выхлопное сопло. Сверхзвуковой воздухозаборник тормозит набегающий высокоскоростной сверхзвуковой поток воздуха до чисел Маха М=3-4. Решеточный пластинчатый гаситель содержит одну или более пластин, расположенных вдоль оси проточного тракта двигателя. Поперечный размер каждого канала, образованного пластинами гасителя, меньше, чем поперечный размер ячеек образующейся при горении детонационной волны, движущейся против потока и набегающей на тот же гаситель, что останавливает и гасит распространение детонационной волны при попадании в узкие каналы гасителя, а ударные волны, возникающие при погасании детонационной волны, сверхзвуковым потоком выносит из каналов в камеру сгорания, препятствуя разрушению ими течения набегающего потока и ограничивая движение детонационных и ударных волн частью гасителя и камерой сгорания, обеспечивая переход горения дефлаграции в детонацию, в результате чего организуется непрерывное нестационарное горение в динамически пульсирующих (возникающих и гаснущих) детонационных волнах и фронтах медленного горения. Технический результат - увеличение тяги и расширение диапазона скоростей полета до чисел Маха М=5-8 при уменьшении теплонапряженности тракта двигателя по сравнению с прямоточным воздушно-реактивным двигателем и прямоточным воздушно-реактивным двигателем со сверхзвуковым горением. 2 н. и 1 з.п. ф-лы, 2 ил.
Наверх