Способ определения действительного значения длины волны лазерного излучения

 

Использование: изобретение относится к области контрольно-измерительной техники и может быть использовано для определения действительного значения длины волны лазерного излучения в интерференционных измерениях при данных условиях окружающей среды, определяемых значением температуры, давления, влажности. Сущность изобретения: способ определения действительного значения длины волны лазерного излучения в интерференционном приборе, использующем акустооптическое преобразование частоты света, основан на сравнении измеряемой длины волны света с длиной волны ультразвука, распространяющейся в акустооптическом модуляторе и которая в данном способе используется в качестве метрологической константы. Эталонное линейное перемещение задают как результат перемещения целого и дробного числа длин волн ультразвуковой волны в протяженном акустооптическом модуляторе, умноженного на значение длины волны ультразвука; при этом структура интерференционного прибора, работающего по предлагаемому способу, должна обеспечивать наличие электрических сигналов, несущих синфазную информацию отдельно о перемещении подвижного отражателя интерферометра и о перемещении акустооптического модулятора. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения действительного значения длины волны лазерного излучения в интерференционных измерениях при данных условиях окружающей среды, определяемых значением температуры, давления, влажности.

Известен способ определения действительного значения [1, 2, 3] длины волны лазерного излучения косвенным методом. Определение действительного значения длины волны лазерного излучения производится посредством измерения коэффициента преломления воздуха nвозд. и при известном значении длины волны лазерного излучения в вакууме. При этом расчетное значение возд. рассчитывается по формуле где возд. значение длины волны лазерного излучения в воздухе; вак. значение длины волны лазерного излучения в вакууме.

Способ основан на определении nвозд. по результатам измерения давления P, температуры t и влажности e воздуха и вычисления отклонений nвозд. от его значения при нормальных условиях nн/P 760 мм рт.ст. t 20oC, l 10 мм рт.ст./ по эмпирической формуле Эдлена: В формуле параметры t, P, e подставляются со своими значениями, выраженными соответственно: t в градусах по Цельсию; P в мм рт. ст.

e в мм рт. ст.

Вычисление n при этом способе осуществляется с помощью специализированных вычислительных устройств, преобразующих параметры P, t, l в электрические сигналы и суммирующие их в соответствии с алгоритмом /2/. При этом, если в качестве коэффициента масштабного преобразования в блоке индикации интерферометра записана величина длины волны лазера для нормальных условий воздуха н то отклонение оперативно вводится в качестве поправок на результаты измерения.

Недостатком косвенного метода измерения и преобразования значений n в цифровой код является необходимость наличия точных датчиков P, t, e, имеющих унифицированные выходные сигналы /частота, код, и т.п./. В настоящее время суммарная погрешность вычисления n по этому способу составляет 1,3510-7, что позволяет следить за изменениями длины волны лазерного излучения при колебаниях параметров окружающей среды в пределах t 205oC; P 76030 мм рт. ст. e 1010 мм рт. ст. с погрешностью = 2310-7. Известен способ, имеющий значительно большую точность, при котором значение nвозд. получают при прямых интерференционных измерениях [2] Этот способ основан на измерении оптической разности хода при прохождении светом одинаковых геометрических путей в средах с известным и измеряемым показателями преломления. Выражая n через порядок интерференции A, длину волны излучения н и длину геометрического пути l, получают искомое значение n по формуле

где nср измеряемый показатель преломления среды;
n0 известный показатель преломления среды.

Результаты проведенных измерений nср лазерными рефлектометрами показывают, что в диапазоне изменений nmax= 210-5 погрешность измерения ncp а следовательно, и возможная минимальная относительная погрешность определения составляет 310-8 и ограничена стабильностью параметров оптических элементов рефрактометра.

Общими недостатками этих способов следует считать то, что коэффициент преломления воздуха nвозд. определяется в локальных точках пространства, часто удаленных от трассы измерения и при этом всегда необходимо знать первоначальное значение длины волны лазера в вакууме lвак или ее значение при нормальных условиях н Неопределенность закона распределения коэффициента преломления вдоль трассы, по которой перемещается подвижный отражатель интерферометра, приводит к неопределенности среднего действительного значения длины волны лазерного излучения на всем участке измерения. Наиболее близким по технической сущности к предлагаемому способу измерения относится способ [3] основанный на прямом измерении усредненного значения длины волны д по трассе измерения.

Здесь д длина волны лазерного излучения при данных условиях окружающей среды определяется путем "калибровки" прибора посредством перемещения подвижного отражателя интерферометра на величину, задаваемую эталонной мерой длины, в качестве которой может использоваться концевая или штриховая мера.

Этот способ реализован в интерференционном измерительном приборе ИПЛ-ЗОК, выпускаемом отечественной промышленностью. В этом приборе определение перемещения производится путем измерения целых и дробных частей периодов (фаз) измерительного электрического сигнала, получаемого синфазным акусто-оптическим гетеродинированием фазы световой волны, распространяющейся в измерительном плече интерферометра и умножением этого числа периодов фазы на коэффициент масштабного преобразования. В качестве коэффициента масштабного преобразования используется действительное значение длины волны используемого лазерного излучения.

Определение действительного значения длины волны лазерного излучения д производится в процессе предварительной "калибровки" прибора. Сущность "калибровки" в этом приборе заключается в определении числа целых и дробных частей периода (фазы) световой волны, укладывающихся в линейном перемещении, задаваемой эталонной мерой длины. Для этого используется задатчик эталонного перемещения компаратор, включающий измерительную машину со штриховой мерой, укомплектованной фотоэлектрическим микроскопом. Подвижный отражатель прибора жестко закрепляют на перемещающемся микроскопе. Микроскоп при этом выполняет роль нуль-индикатора нулевого и конечного штриха меры. Перед калибровкой осуществляется предварительное обнуление показаний счетчиков отсчетного устройства прибора и установка микроскопа на нулевой штрих шкалы. В качестве коэффициента масштабного преобразования в блоке перемножения чисел прибора устанавливается значение длины волны лазерного излучения с точностью до двух значащих цифр после запятой /0,63 мкм/. Далее производится перемещение фотоэлектрического микроскопа и связанного с ним подвижного отражателя интерферометра на конечный штрих эталонной меры. При этом в процессе перемещения интегрирующим цифровым фазометром прибора измеряется целое и дробное число длин волн, укладывающихся в величине перемещения, задаваемого перемещением микроскопа. Блок умножения чисел постоянно в процессе перемещения производит перемножение измеренного числа целых и дробных долей фазы световой волны на значение коэффициента масштабного преобразования. Поскольку предварительно набранное значение коэффициента масштабного преобразования не соответствует действующему значению длины волны лазерного излучения, величина эталонного перемещения, отображаемая на панели индикации не будет соответствовать в конце перемещения действительному размеру эталонной меры. Далее определение действительного значения длины волны лазерного излучения производится путем ручного набора на программном переключателе прибора такого значения коэффициента масштабного преобразования, которое бы в результате его перемножения на измеренное число целых и дробных долей фазы световой волны дало бы значение линейного перемещения, равное действительному значению линейного перемещения, т. е. действительное значение длины волны лазерного излучения осуществляется в результате деления величины эталонного перемещения на количество периодов /фаз/ световой волны, укладывающееся в это перемещение.

Недостатком этого способа следует считать наличие таких погрешностей измерения, как погрешность передачи размера штриховой меры, которая определяется многими факторами, среди которых основными считаются: погрешность аттестации, погрешность микроскопа, погрешность от несоблюдения принципа Аббе, погрешность выставления штриховой меры вдоль линии измерения, погрешность из-за тепловых деформаций штриховой меры и станины компаратора, которое приводит как к систематической, так и случайной составляющим.

Недостатком также можно считать то, что для проведения прецизионных измерений лазерный интерференционный прибор должен быть укомплектован компаратором с образцовой штриховой мерой, что сужает его функциональные возможности.

Задачей, на решение которой направлено предлагаемое изобретение, является повышение точности определения действительного значения длины волны лазерного излучения.

Задача решается следующим образом.

Данный способ определения действительного значения длины волны лазерного излучения в интерференционном приборе, использующим акустооптическое преобразование частоты света, основан на сравнении измеряемой длины волны света с длиной ультразвука, распространяющейся в акустооптическом модуляторе и которая при данном способе используется в качестве метрологической константы.

Сущность технического решения состоит в том, что эталонное линейное перемещение задают как результат перемещения целого и дробного числа длин волн ультразвуковой волны в протяженном акустооптческом модуляторе, умноженного на значение длины волны ультразвука.

Введение новых существенных признаков в данном способе обеспечивает получение положительного эффекта, заключающегося в повышении точности определения действительного значения длины волны лазерного излучения для интерференционных измерений.

На чертеже изображено устройство, позволяющее реализовать предлагаемый способ. Исходное лазерное излучение от источника 1 через светоделительный элемент 2 направляют в два независимых интерференционных канала, каждый из которых может быть сформирован различными типами интерферометров /например, интерферометр Майкельсона/. После прохождения первого интерференционного канала, образованного светоделительным элементом 3, жестко скрепленным с ним уголковым отражателями 4 и 5 и оптическим клином 6, два интерференционных световых пучка, распространяющихся под углом, кратным углу дифракции друг к другу /плоскость угла разведения должна лежать в плоскости акустооптического взаимодействия в модуляторе/, направляют после фокусирующей системы 7 для просвечивания через акустооптический модулятор 8. После пространственного разделения в фокальной плоскости фокусирующей системы дифракционных порядков пространственно-временных спектров совмещенные по направлению, но различные по временным частотам дифракционные порядки, например, "0"-ой от информационной световой волны и "+1"-ый от референтной световой волны, направляют на фотоприемник 9, на выходе которого выделяют электрический сигнал, следующий на несущей частоте, равной разности фотосмешиваемых частот /при фотодетектировании "0" и "+1" порядка несущая частота равна частоте ультразвукового возбуждения в акустооптическом модуляторе/. Выходной сигнал фотоприемника 9 описывается в общем виде выражением

где lи и lр длины оптических путей распространения информационной и референтной световых волн в плечах интерферометра;
l длина волны света;
Lм расстояние, на которое распространяется фронт ультразвуковой волны в модуляторе от плоскости пьезоизлучателя до зоны акустооптического взаимодействия света и звука;
L длина ультразвуковой волны,
F частота возбуждения ультразвуковой волны.

Поскольку в эксперименте значение составляющих vи и p остается постоянным, фаза выходного сигнала с фотоприемника 17 смещается синфазно фазе ультразвуковой волны.

После прохождения второго интерференционного канала, образованного светоделительным элементом 10, жестко скрепленным с ним уголковым отражателем 11, жестко скрепленным с акустооптическим модулятором уголковым отражателем 12 и оптическим клином 13, два интерференционных световых пучка, распространяющихся под углом, кратным углу дифракции друг к другу, направляют через поворотные зеркала 14 и 15 после фокусирующей системы 16 также для просвечивания через акустооптический модулятор 8. Выходной сигнал с фотоприемника 17 в общем виде описывается выражением 5.

Но поскольку в эксперименте значение составляющей и не остается постоянной, то фаза выходного сигнала с фотоприемника 17 смещается синфазно фазе значений двух составляющих и и м
Таким образом, с фотоприемников 9 и 17 получают два электрических сигнала, несущих синфазную информацию отдельно о перемещении акустооптического модулятора и о перемещении подвижного отражателя интерферометра и акустооптического модулятора. Электрические сигналы с фотоприемников 9 и 17 направляют на преобразователи частоты 18 и 19. Электрический сигнал с фотоприемника 9 также направляют на преобразователь частоты 20, где происходит перенос его на другую несущую частоту при помощи однополосной амплитудной модуляции. На второй вход преобразователя частоты 20 подают электрический сигнал с генератора частоты 21 через делитель 22. С выхода преобразователя частоты 20 электрический сигнал через фильтр 23 подают на вторые входы преобразователей частоты 18 и 19. В преобразователе частоты 18 выделяют сигнал разностной частоты /фазы/ между электрическими сигналами с преобразователей частоты 20 и фотоприемника 17. Фаза выходного сигнала с преобразователя частоты 18 смещается синфазно фазе световой волны. Электрические сигналы с преобразователей частоты 18 и 19 подают на фазометры интегрирующие цифровые 24 и 25, в которых происходит счет значений периодов /фаз/ световой и ультразвуковой волн, уложившихся в расстояние, равное перемещению акустооптического модулятора. Электрический сигнал с фазометра 25, равный значению числа периодов /фаз/ ультразвуковой волны, уложившейся в расстоянии, равном перемещению акустооптического модулятора, направляют в блок умножения чисел 26, где происходит умножение его на значение длины волны ультразвука с панели преднабора константы 27, которое при данном способе является метрологической константой. С выхода блока умножения чисел 26 электрический сигнал подают в блок деления чисел 28, где происходит деление данного значения на значение числа периодов /фаз/ световой волны, уложившихся в расстоянии, равном перемещению акустооптического модулятора, полученное с фазометра 24. С блока деления чисел 28 получают электрический сигнал, равный действительному усредненному по трассе измерения значению длины волны лазерного излучения.

Полученное значение можно представить с помощью выражения

где д действительное значение длины волны лазерного излучения;
длина волны ультразвука;
Nу, Nс числа целых и дробных частей периодов /фаз/ ультразвуковой и световой волн, укладывающихся в величине перемещения акустооптического модулятора.

По сравнению с прототипом в предлагаемом способе определения действительного значения длины волны лазерного излучения отсутствуют такие погрешности, как погрешность микроскопа, погрешность от несоблюдения принципа Аббе, погрешность выставления штриховой меры вдоль линии измерения, погрешность из-за тепловых деформаций штриховой меры и станины компаратора.

Погрешность определения усредненного текущего значения длины волны лазера в данной среде на участке измерения зависит только от разрядности счетчиков и разрешающей способности самого интерферометра, т.е. погрешности преобразования фазы световой волны в фазу электрического измерительного сигнала. Эта погрешность в общем виде носит характер функционально случайной погрешности, систематическая составляющая которой в настоящее время методами построения дифференциальных схем обработки электрических сигналов на этапе нормирования сводится к нулю. Поэтому эта погрешность, в основном, определяется соотношением сигнал/шум электрического измерительного сигнала после его нормирования.

Потенциально считается, что эта погрешность ограничена величиной 10-4 и обусловлена принципиально неустранимой причиной случайной дискретной природой фотоэффекта дробовым шумом фотоприемника.

Практически эта величина получается, например, в гетеродинных лазерных интерферометрах с акустооптическим модулятором, равной 4,510-4, т.е. гораздо меньше дискреты младшего разряда в блоке индикации.

Погрешность определения значения не превышает 1,510-9, следовательно, и максимальная накопленная погрешность измерения длины волны лазера на этом участке, на котором производилось определение lд не превышает этой величины.

Таким образом, использование протяженного акустооптического модулятора в качестве задатчика эталонных линейных перемещений повышает точность измерения действительного значения длины волны лазерного излучения.


Формула изобретения

Способ определения действительного значения длины волны лазерного излучения, заключающийся в том, что подвижный отражатель интерферометра жестко закрепляют на эталонном задатчике линейного перемещения, измеряют целое и дробное числа периодов фазы световой волны, укладывающихся в этом перемещении, и вычисляют искомое значение длины волны лазерного излучения путем деления значения эталонного линейного перемещения на число укладывающихся периодов световой волны, отличающийся тем, что эталонное линейное перемещение задают как результат перемещения целого и дробного числел длин волн ультразвуковой волны в протяженном акустооптическом модуляторе, умноженного на значение длины волны ультразвука.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к оптической технике и может быть использовано для определения формы волнового фронта принимаемого оптического излучения, например, в устройствах контроля качества оптических систем

Изобретение относится к интерференционным измерениям

Изобретение относится к технике сверхвысокочастотного /СВЧ/ и инфракрасного /ИК/ диапазонов, прежде всего миллиметрового и субмиллиметрового, а именно к интерферометрии этих диапазонов, к интерферометрическим способам измерения смещений, толщин, физических и химических параметров веществ и т

Изобретение относится к измерительной технике и может быть использовано для определения оптических разностей хода, например, в поляризационно-оптическом методе механики деформируемого твердого тела

Изобретение относится к технической физике, в частности к классу устройств для исследования внутренней структуры объектов, и может быть использовано в медицине для диагностики состояния отдельных органов и систем человека, в частности, для оптической когерентной томографии, и в технической диагностике, например, для контроля технологических процессов

Изобретение относится к волоконной оптике и может быть использовано при конструировании датчиков физических величин на основе волоконных интерферометров, а также волоконно-оптических гироскопов

Изобретение относится к измерению оптических характеристик веществ и может быть использовано для оптического детектирования вещественных компонентов

Изобретение относится к методам измерений, в частности измерений дистанции, производимых с помощью лазерного интерферометра (1, 2)

Изобретение относится к технической физике, в частности к исследованиям внутренней структуры объектов оптическими средствами, и может быть использовано для получения изображения объекта методом рефлектометрии и оптической когерентной томографии в медицинской диагностике состояния отдельных органов и систем in vivo или in vitro, а также в технической диагностике, например, для контроля технологических процессов

Изобретение относится к измерительным устройствам и может быть использовано, в частности, для интерферометрических измерений в устройствах, отличающихся оптическими средствами измерения, например для исследования внутренней структуры объекта исследования и получения его изображения с помощью оптического низкокогерентного излучения при медицинской диагностике состояния отдельных органов и систем человека, в том числе in vivo, а также в технической диагностике, например для контроля технологических процессов

Изобретение относится к измерительной технике в области спектрометрии и представляет собой быстродействующий измеритель длины волны лазерного излучения, распространяющегося по волоконному световоду, построенный на основе двухканального интерферометра Майкельсона

Изобретение относится к оптическим измерениям и к построению контрольно-измерительных устройств с использованием голографии
Наверх