Электролит для предварительного железнения

 

Изобретение относится к области нанесения металлических покрытий, в частности железных, гальваническим способом на изделия из литейных цинковых сплавов типа ЦАМ и может быть использовано в радиоэлектронной промышленности, автомобилестроении и др. Электролит для предварительного железнения содержит, г/л: железо (II) сернокислое 4 - 7, аммоний щавелевокислый 40 - 60, борная кислота 10 - 30, ацетилсалициловая кислота 0,1 - 0,2. Осаждение ведут при катодной плотности тока 1 - 10 А/дм2, температуре 50 - 70oC, pH 6 - 7,8. Нанесение покрытия при использовании электролита позволяет увеличить прочность сцепления железных покрытий с цинковой основой из сплавов типа ЦАМ, получить пластичные железные осадки, а также использовать широкий интервал катодной плотности тока. 2 табл.

Изобретение относится к области нанесения металлических покрытий, в частности железных, гальваническим способом на изделия из литейных цинковых сплавов типа ЦАМ и может быть использовано в радиоэлектронной промышленности, автомобилестроении и др.

Известен сульфатный электролит железнения [1] содержащий, г/л: Железо (II) сернокислое 400 450 Алюминий сернокислый 100 120 Соляная кислота 1 1,5 pH 1,4 1,6 Температура, oC 18 40 Катодная плотность тока, А/дм2 5 20 Недостатком аналога является малая прочность сцепления железного осадка со сплавами типа ЦАМ, несоответствующая ГОСТу 9.302-88.

Наиболее близким к предлагаемому является сульфатный электролит для предварительного железнения [2] содержащий, г/л: Железо (II) сернокислое 150 Железо хлористое 75
Аммоний сернокислый 120
Аммоний щавелевокислый 8
Вода до 1 литра
Температура, oC 18 25
Катодная плотность тока, А/дм2 1
Недостатками прототипа являются: малая прочность сцепления железного осадка с цинковыми сплавами типа ЦАМ, несоответствующая ГОСТу 9.302-88; узкий интервал катодной плотности тока; невозможность железнения при высоких температурах, так как из горящего сульфатного электролита получают хрупкие осадки с большими внутренними напряжениями; кроме того, электролит дорог.

Цель изобретения увеличение прочности сцепления железных покрытий с цинковыми сплавами типа ЦАМ, возможности использования широкого интервала катодной плотности тока, проведение электролиза из горячих электролитов, позволяющих получать пластичные железные осадки, снижение концентраций компонентов электролита и, следовательно, его стоимости.

Цель достигается путем создания электролита для предварительного железнения цинковых сплавов, включающего железо (II) сернокислое, аммоний щавелевокислый и воду, который дополнительно содержит борную и ацетилсалициловую кислоты при следующем соотношении компонентов, г/л:
Железо (II) сернокислое 4 7
Аммоний щавелевокислый 40 60
Борная кислота 10 30
Ацетилсалициловая кислота 0,1 0,2
Вода до 1 литра
pH 6 7,8
Температура, oC 50 70
Катодная плотность тока, А/дм2 1 10
Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявляемый электролит отличается от него введением новых компонентов, а именно борной и ацетилсалициловой кислот.

Железо (II) сернокислое, 7-водное, ГОСТ 4148-78, ч, химическая формула FeSO47H2O, плотность 1,898 г/см3, температура плавления 64oC, растворимость 33 г в 100 г холодной и 149 г в 100 г горячей воды.

Аммоний щавелевокислый, 1-водный, аммоний оксалат, ГОСТ 5712-78, чда, химическая формула (NH4)2C2O4 H2O, плотность 1,50 г/см3, температура плавления разлагается, растворимость 2,6 г в 100 г холодной воды и 11,8 г в 100 г горячей воды.

Борная кислота (орто), ГОСТ 9656-75, ч, химическая формула H3BO3, плотность 1,435 г/см3, температура плавления 185oC разлагается, растворимость 2,7 г в 100 г холодной воды и 39 г в 100 г горячей воды.

Ацетилсалициловая кислота, аспирин, о-ацетооксибензойная кислота, химическая формула CH3COOC6H4COOH, температура плавления 133 135 oC, растворимость в воде 0,25 г на 100 мл.

Пример 1. Для приготовления 1 л электролита 50 г аммония щавелевокислого растворяли в воде при температуре 60oC. К раствору добавляли 6 г железа (II) сернокислого при тщательном перемешивании. Борную кислоту в количестве 20 г растворяли в 200 г воды при 60oC и вводили при перемешивании в раствор. Ацетилсалициловую кислоту в количестве 0,15 г растворяли в 100 г воды при 60oC, затем вводили при перемешивании в раствор железа (II) сернокислого и аммония щавелевокислого. Затем объем полученного раствора доводили до 1 л водой и охлаждали до комнатной температуры. Требуемое значение pH 7 устанавливали при помощи серной кислоты или 25% раствора аммиака. Приготовленный электролит имеет следующий состав, г/л:
Железо (II) сернокислое 6
Аммоний щавелевокислый 50
Борная кислота 20
Ацетилсалициловая кислота 0,15
pH 7
Температура, oC 60
Катодная плотность тока, А/дм2 1-10
Примеры с другими значениями заявляемого электролита приведены в табл.1.

После приготовления электролитов поверхность образцов из цинкового сплава ЦАМ электрохимически обезжиривали в растворе [2] содержащем, г/л:
Натрий гидроокись 10
Натрий углекислый 10
Натрий фосфорнокислый 5
Натрий кремнекислый 27
Сульфонол НП-3 0,2
Температура, oC 65
Катодная плотность тока, А/дм2 1,5
Продолжительность, мин 0,5
Затем образцы химически активировали в технической серной кислоте 50 г/л, при комнатной температуре, в течение 10 с и осаждали железные покрытия в приготовленном электролите. Полученные железные покрытия испытывали на прочность сцепления с цинковым сплавом. При определении диапазона рабочей плотности тока устанавливали верхнюю и нижнюю границы катодной плотности тока. Для их определения на образцы из цинкового сплава ЦАМ наносили железное покрытие толщиной до 6 мкм, а затем хромовое до 12 мкм. Полученные покрытия по внешнему виду соответствуют требованиям ГОСТа 9.301-86, а по сцеплению с основным металлом ГОСТу 9.302-88.

Количественные испытания прочности сцепления покрытий с основой из цинкового сплава ЦАМ проводили методом отрыва с использованием разрывной машины 2063 Р-0.05. Величину сцепления выражали в кДж/м2. При всех испытаниях характеристик получаемого железного покрытия проводили не менее 4 - 5 параллельных опытов и брали среднеарифметическое значение величин. Результаты испытаний представлены в табл. 2.

Из табл. 2 видно, что предлагаемый электролит (примеры 1 3) позволяет получать железные покрытия, имеющие прочность сцепления в среднем в 50 раз большую, чем у прототипа, а кроме того имеет более широкий диапазон рабочей плотности тока, работает при повышенной температуре, что позволяет получать пластичные железные осадки, а также в электролите снижены концентрации основных компонентов, поэтому он имеет более низкую стоимость.

Другим преимуществом заявляемого электролита является то, что электролит обладает более высокой буферной емкостью, в силу чего требуется менее частая корректировка pH в процессе работы.


Формула изобретения

Электролит для предварительного железнения, содержащий железо (II) сернокислое и аммоний щавелевокислый, отличающийся тем, что он дополнительно содержит борную и ацетилсалициловую кислоты при следующем соотношении компонентов, г/л:
Железо (II) сернокислое 4 7
Аммоний щавелевокислый 40 60
Борная кислота 10 30
Ацетилсалициловая кислота 0,1 0,20

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к гальваническим (гальваностегических и гальванопластическим) процессам, в частности к процессам электролитического железнения, и может быть использовано для восстановления и упрочения деталей машин и аппаратов и в других технологических процессах
Изобретение относится к области электроосаждения железных покрытий и может быть использовано для восстановления изношенных деталей на предприятиях автомобильной промышленности, машиностроительных заводах, а также в производстве и при ремонте инструментов и изделий специального назначения

Изобретение относится к электролитическому осаждению железных покрытий и может быть использовано в машиностроении, авиационной промышленности, ремонтном производстве для восстановления и упрочнения деталей машин, а также получения функциональных покрытий

Изобретение относится к электролитическому нанесению железных покрытий и может быть использовано при изготовлении изделий с износостойки- Ш1 покрытиями

Изобретение относится к области нанесения электрохимических покрытий, в частности железных, и может быть использовано для восстановления изношенных деталей машин

Изобретение относится к восстановлению и упрочнению деталей, преимущественно крупногабаритных изделий сложной формы, и может быть использовано в промышленности и ремонтном производстве при повышении долговечности и восстановлении изношенных рабочих поверхностей деталей машин, например шеек коленчатых валов, плунжеров, стержней клапанов двигателей внутреннего сгорания, кулачковых распределительных механизмов и других тел вращения путем нанесения электролитических покрытий на основе железа

Изобретение относится к гальванотехнике, в частности к электролитам железнения, использование которых позволяет наращивать слой железа повышенной твердости на поверхности из любых марок стали и чугуна, что дает возможность восстанавливать любые изношенные детали машин и механизмов, либо создавать упрочняющий слой на новых деталях, существенно продлевая срок их эксплуатации

Изобретение относится к области материаловедения и может быть использовано для получения гальванических фрактальных покрытий, обладающих более высокой твердостью и декоративными свойствами
Изобретение относится к области гальваностегии и может быть использовано в промышленности при ремонте машин и оборудования

Изобретение относится к области гальваностегии и может найти применение в радиоэлектронной промышленности и других областях, требующих получения тонких пленок, либо нанесения подслоя железа

Изобретение относится к восстановлению изношенных деталей машин и механизмов путем нанесения на их поверхность гальванических железных покрытий, обладающих повышенной износостойкостью

Изобретение относится к области гальваностегии, в частности к электрохимическому осаждению железных покрытий в машиностроительной и родственных отраслях промышленности, ремонтном производстве

Изобретение относится к электролитическому осаждению твердых износостойких покрытий, а именно композиционных электрохимических покрытий на основе железа с металлокерамическими частицами, применяемых для восстановления и упрочнения поверхностей деталей

Изобретение относится к способу и устройству нанесения покрытия на поверхность реторты, используемой для получения губчатого титана. Осуществляют заливку в реторту электролита в виде смеси водного раствора хлористого железа и соляной кислоты. В электролит устанавливают растворимые электроды из малоуглеродистой стали в количестве 5 штук. Проводят электролитическое нанесение покрытия из металлического железа на поверхность реторты. Источник постоянного тока положительным полюсом соединен с крышкой реторты, а отрицательным полюсом - с фланцем реторты. Затем с реторты снимают крышку с электродами, удаляют электролит, устанавливают с наклоном на стенде для промывки реторты и промывают реторту изнутри водой. Затем реторту устанавливают в вакуумную электропечь, размещают в реторте устройство для титанирования с металлизатором в виде губчатого титана. Реторту разогревают и наносят при высокотемпературной выдержке на ее поверхность термодиффузионное титановое покрытие. Затем реторту извлекают из вакуумной электропечи и устанавливают в устройство для охлаждения. Охлажденную реторту направляют на процесс получения губчатого титана. Это позволит повысить качество губчатого титана и повысить срок службы реторты. 2 н. и 7 з.п. ф-лы, 1 пр., 1 ил.
Наверх