Вихревой термопреобразователь

 

Использование: в холодильной технике. Сущность изобретения: вихревой термопреобразователь содержит тангенциальный сопловой ввод, камеру энергетического разделения с рубашкой и задней стенкой с обтекателем, развихритель потока и осевой выходной патрубок. Кольцевая камера выполнена в виде двояковыпуклой линзы с криволинейными поверхностями, состыкованными по внешнему диаметру. Камера энергетического разделения плавно сопряжена со средней частью кольцевой камеры, обтекателем задней стенки и осевым патрубком. Обтекатель выполнен в виде воронки с радиальным переходом от задней стенки. Развихритель установлен на патрубке выхода холодной среды и жестко соединен с носком обтекателя. На внешней поверхности горячей камеры выполнена рубашка для прокачки теплоносителя. На поверхности холодной части камеры разделения и осевого патрубка - рубашка для низкопотенциального теплоносителя. 4 з. п. ф-лы, 5 ил.

Изобретение относится к холодильной технике, конкретно к вихревым генераторам холода, основанным на использовании эффекта Ранка, а также к теплоэнергетике, конкретно к вихревым теплогенераторам, работающим на газообразной и жидкой рабочих средах, в частности хладонах, углеводородах, воде.

Известны вихревые термопреобразователи, выполненные в виде цилиндрической или конической трубы, снабженной камерой энергетического разделения потока, рубашкой для прокачки теплоносителя, второй рубашкой-теплообменником на выходе холодной среды, камерой вихревого ввода, сопряженной с трубой, содержащие обтекатель на задней стенке, осевой патрубок для выхода холодной среды и развихритель закрученного потока [1-4] Указанные термопреобразователи имеют большую длину камеры энергетического разделения, но ее термодинамическая эффективность недостаточно высока вследствие того, что радиусы вращения рабочей среды на участках входа и выхода имеют небольшое различие (R/r 3 5).

Известен также вихревой термопреобразователь [5] в котором сопловой ввод рабочей среды установлен на внешнем диаметре плоской кольцевой камеры и вихревой сток происходит в радиальном направлении к осевому сливному патрубку (R/r10).

В устройстве степень расширения потока значительно возрастает, соответственно увеличивается и отношение температур горячего и холодного потоков, а следовательно термодинамическое качество устройства. Однако более эффективная вихревая камера плохо сочетается с камерой энергетического разделения, выполненной в виде набора плоских ребер с прокладками и центральными отверстиями постоянного диаметра, аэродинамическое качество которых низкое. Кроме того, плоская камера не оптимальна при высоких скоростях потока. По этой причине снижается скорость вихревого потока в камере разделения и эффективность всего устройства. Кроме того, устройство металлоемко, допускает протечки рабочей среды через упругие прокладки.

Предлагаемое устройство имеет целью устранить указанные недостатки и повысить энергетические и технико-экономические показатели.

Поставленная цель достигается тем, что кольцевая камера вихревого ввода выполнена в виде двояковыпуклой линзы, образованной двумя криволинейными, например частями конических или сферических, поверхностями, состыкованными между собой по внешнему диаметру, а камера энергетического разделения плавно сопряжена со средней частью кольцевой камеры, обтекателем задней стенки и осевым патрубком выхода на передней стенке. Угол раскрытия диффузора составляет при этом 10 12o. Кроме того, при этом обтекатель задней стенки выполнен в виде глухой конической воронки с радиальным переходом от средней части задней стенки камеры разделения и носком на входе осевого патрубка; развихритель установлен на патрубке выхода холодной среды и жестко соединен своей входной частью с носком обтекателя задней стенки; рубашка для прокачки теплоносителя выполнена на внешней поверхности камеры вихревого ввода и охватывает горячую зону камеры разделения; осевой патрубок выхода холодной среды снабжен индивидуальной рубашкой для прокачки второго теплоносителя с штуцерами входа и выхода, а рубашка дополнительно охватывает холодную зону камеры разделения, патрубок снабжен оребрением.

В результате этого поток рабочей среды, вводимый через сопло патрубка вихревого входа в кольцевую камеру на ее внешнем диаметре, закручивается в ней и перемещается по радиусу камеры в направлении оси вращения, последовательно проходя камеру энергетического разделения и плавно меняя направление движения в сторону осевого патрубка выхода, не претерпевая при этом ненужных аэрогидродинамических потерь энергии, чем обеспечивается наиболее эффективное преобразование кинетической энергии потока в температурный градиент, повышение холодильного и отопительного коэффициентов преобразования.

Действительно, температурный градиент, достигаемый в центробежном поле [6] составляет величину: где угловая скорость; R радиус вращения рабочей среды; K показатель адиабаты; Cp теплоемкость; g0 ускорение силы тяжести.

Поскольку v = R где V окружная скорость потока, Следовательно достижимый в преобразователе температурный градиент определяется квадратом окружной скорости, с которой рабочая среда вводится через сопло в кольцевую камеру и перемещается к выходному патрубку, а также характеристиками рабочей среды. Для газов и пара сопловой ввод выполнен в виде сверхзвукового сопла Лаваля, а для несжимаемых жидкостей в виде сходящегося конфузора малой длины с радиусным входом.

В качестве рабочей среды из газов оптимальны тяжелые инертные газы и их смеси с гелием и хладонами, обладающими лучшей компрессией, а из жидкостей - углеводороды, например керосин, обладающие высокой текучестью, а следовательно и высокими скоростями впрыска, вода, как наиболее доступная и экологически чистая жидкость.

На фиг. 1, 2 показаны варианты исполнения, продольный разрез; на фиг. 3
поперечный разрез; на фиг. 4 продольный разрез соплового ввода для газа; на фиг. 5 продольный разрез соплового ввода для жидкости.

Устройство содержит тангенциальный сопловой ввод 1 рабочей среды, кольцевую камеру 2, выполненную в виде двояковыпуклой линзы, образованной двумя криволинейными, например частями, сферическими поверхностями с передней 3 и задней 4 стенками, состыкованными между собой по внешнему диаметру, камеру 5 энергетического разделения, плавно сопряженную со средней частью кольцевой камеры, с обтекателем 6 на задней стенке, выполненным в виде глухой конической воронки с радиальным переходом от средней части задней стенки и вытянутым в сторону выходного патрубка 7 носком 8.

Перед патрубком выхода холодной среды установлен развихритель 9 потока, выполненный в виде плоской пластины, трезубца или крестовины. Выступающая передняя кромка пластины развихрителя жестко соединена с носком обтекателя.

На внешней поверхности кольцевой камеры выполнена рубашка 10, охватывающая также горячую зону камеры разделения и образующая полость для прокачки горячего теплоносителя.

Вторая рубашка 11 с штуцерами входа и выхода образована на осевом патрубке и охватывает также холодную приосевую зону камеры разделения. При использовании в качестве холодильника осевой патрубок закрыт теплоизолятором 12.

Сопловой ввод рабочей среды выполнен оптимизированным для каждой конкретной среды в виде, например, сопла Лаваля для газообразных сред или сходящегося скругленного на входе короткого конфузора для несжимаемых жидкостей.

Устройство работает следующим образом.

Рабочая среда под избыточным давлением 3 10 бар подается в сопловой ввод, ускоряется в нем и впрыскивается со скоростью 100 500 м/с в кольцевую камеру. Вращаясь в диффузоре камеры, струя совершает движение по сужающейся спирали в направлении осевого выходного патрубка. Линейная окружная скорость потока при этом постепенно снижается пропорционально коэффициенту потерь, а угловая скорость возрастете обратно пропорционально радиусу вращения и более медленно снижается соответственно снижению окружной скорости. Центробежное поле, действующее на вращающийся поток среды, создает в камерах ввода и энергетического разделения центробежный температурный градиент, пропорциональный отношению давлений на входе и выходе. Чем выше степень расширения потока, тем выше и теплоперепад.

При использовании термопреобразователя в режиме холодильника в полость, закрытую рубашкой 10, вводится охлаждающий теплоноситель, например вода с температурой 10 20oC.

При работе в качестве теплогенератора или теплового насоса второй теплоноситель прокачивается через полость, закрытую рубашкой 11. Тепло от низкопотенциального теплоносителя (10 -20oC) передается вращающейся среде и через радиальный центробежный температурный градиент к внешнему диаметру камер разделения и ввода, нагревая теплоноситель, омывающий горячую зону,до высоких температур.

Устройство обтекателя на задней стенке и развихрителя на выходе потока позволяют перевести кинетическую энергию потока в температурный градиент. Жесткая связь кромки развихрителя с носком обтекателя, кроме того, увеличивает его жесткость и предотвращает скручивание скоростным потоком.

Таким образом устройство обеспечивает поставленную цель, повышает эффективность, отопительный и холодильный коэффициенты преобразования, уменьшает металлоемкость, исключает протечки.

Основной отличительный признак устройства выполнение кольцевой камеры вихревого ввода в виде двояковыпуклой линзы позволяет:
перенести диффузор с участка длинной цилиндрической трубы на саму кольцевую камеру, тем самым сократить длину;
обеспечить плавный переход с минимальными потерями от диффузора к конфузору выходного патрубка;
увеличить прочность и устойчивость формы (жесткость) камеры.


Формула изобретения

1. Вихревой термопреобразователь, содержащий тангенциальный сопловой ввод рабочей среды, кольцевую камеру вихревого ввода, камеру энергетического разделения с передней и задней стенками и осевой патрубок выхода холодного потока, отличающийся тем, что термопреобразователь снабжен рубашкой для прокачки теплоносителя, размещенной на камере энергетического разделения, развихрителем потока и обтекателем, осевой патрубок установлен на передней стенке, обтекатель на задней стенке, кольцевая камера выполнена в виде линзы, образованной двумя криволинейными поверхностями, состыкованными между собой по внешнему диаметру и образующими расходящийся диффузор, камера энергетического разделения плавно сопряжена со средней частью кольцевой камеры, обтекателем задней стенки и осевым патрубком, при этом обтекатель задней стенки выполнен в виде глухой конической воронки с радиальным переходом от средней части задней стенки камеры разделения, носок которой расположен на вход осевого патрубка, развихритель установлен на патрубке и жестко соединен своей входной частью с носком обтекателя задней стенки.

2. Термопреобразователь по п. 1, отличающийся тем, что расходящийся диффузор кольцевой камеры имеет угол раскрытия в пределах 10 12oС.

3. Термопреобразователь по пп. 1 и 2, отличающийся тем, что рубашка для прокачки теплоносителя выполнена на внешней поверхности камеры вихревого ввода и охватывает горячую зону камеры разделения.

4. Термопреобразователь по пп. 1 3, отличающийся тем, что осевой патрубок выхода холодной среды снабжен индивидуальной рубашкой для прокачки второго теплоносителя со штуцерами входа и выхода и внешним оребрением, при этом рубашка дополнительно охватывает холодную зону камеры энергетического разделения.

5. Термопреобразователь по пп. 1 4, отличающийся тем, что сопловой ввод оптимизирован по своим поперечному и продольному сечениям для каждой конкретной рабочей среды.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5



 

Похожие патенты:

Изобретение относится к разделу механики, в частности к классам отопительной и холодильной техники, представляет собой тепловой насос с автономным тепловым приводом, и может найти применение при создании кондиционеров и агрегатов для воздушного обогрева и охлаждения жилых и производственных помещений

Изобретение относится к криомедицине

Изобретение относится к криомедицине

Изобретение относится к системам охлаждения и может быть использовано в рефрижераторах для охлаждения перевозимого груза, для локального охлаждения промышленной техники и т.д

Изобретение относится к тепловой и холодильной технике, конкретно к вихревым трансформаторам тепла (вихревым трубам), работающим на использовании эффекта Ранка

Изобретение относится к промышленной теплотехнике, в частности к созданию холодильно-нагревательных аппаратов для разделения газового потока на холодную и горячую части

Изобретение относится к отопительной и холодильной технике, представляет собой бесфреоновый тепловой насос с силовым приводом и может найти применение при создании кондиционеров и агрегатов для воздушного обогрева и охлаждения жилых и производственных помещений

Изобретение относится к холодильной технике, в частности к термоэлектрическим холодильникам транспортных средств

Изобретение относится к холодильным машинам, в частности к установкам для охлаждения воздухом холодильных камер

Изобретение относится к способам разделения воздуха в воздухоразделяющих установках глубокого охлаждения для получения технологического, технического, медицинского кислорода, чистого азота и редких газов и может быть использовано на заводах для производства товарного газообразного и жидкого кислорода и других газов, на кислородных станциях металлургических, химических и машиностроительных предприятий

Изобретение относится к энергетическим установкам для подогрева воды и может найти применение в отопительных системах

Изобретение относится к холодильной технике, конкретно к вихревым генераторам холода, основанным на использовании эффекта Ранка, а также к теплоэнергетике, конкретно к вихревым теплогенераторам, работающим на газообразной и жидкой рабочих средах, в частности хладонах, углеводородах, воде

Наверх