Способ получения жидкого азота

 

Использование: в неорганической химии. Сущность изобретения: способ получения жидкого азота может применяться в установках, предназначенных для получения жидкого азота сравнительно небольшой производительности /примерно до 2 т/ч/ при давлении разделяемого воздуха после компрессора - 0,7 - 1 МПа. Изобретение позволяет при изотермическом КПД компрессора 0,65 и адиабатическом КПД детандера 0,8 уменьшить расход энергии на 1 кГ жидкого азота до 0,85 квт-ч/кг. Для этого пары кубовой жидкости подогревают до температуры более высокой, чем температура начала детандирования воздуха, детандируют и направляют на охлаждение воздуха. 1 ил.

Изобретение относится к неорганической химии и может применяться в установках, предназначенных для получения жидкого азота сравнительно небольшой производительности (примерно до 2 т/ч).

Известен способ получения жидкого азота, включающий разделение воздуха и кубовую жидкость [1] Недостатками указанного способа являются высокое давление однозначно предполагающее использование поршневых компрессоров, сложных теплообменников и холодильное оборудование на уровне 225 255 К.

Наиболее близким к заявляемому техническому решению является способ получения жидкого азота, включающий разделение воздуха на детандируемую и разделяемую, в свою очередь, на азот и кубовую жидкость, испарение кубовой жидкости и охлаждение воздуха потоком детандированного воздуха и потоком паров кубовой жидкости [2] Недостатком указанного способа являются пониженное извлечение жидкого азота и повышенный удельный расход энергии.

Решаемая задача повышение экономичности способа путем увеличения выхода жидкого продукта и снижения удельных энергозатрат.

Это достигается тем, что согласно предлагаемому способу получения жидкого азота, включающему охлаждение воздуха, разделение его в процессе охлаждения на две части, первую часть детандируют и возвращают на охлаждение воздуха, а вторую направляют на ректификацию с получением азота и кубовой жидкости, кубовую жидкость испаряют, пары направляют на охлаждение воздуха, в процессе охлаждения воздуха пары кубовой жидкости детандируют и после детандирования возвращают на охлаждение воздуха, при этом детандирование паров кубовой жидкости ведут с начальной температурой более высокой, чем температура начала детандирования первой части воздуха.

Сопоставительный анализ показывает, что заявляемый способ отличается наличием новых операций, а именно: в процессе охлаждения воздуха пары кубовой жидкости детандируют и возвращают на охлаждение, что означает увеличение холодопроизводительности на единицу сжимаемого в компрессоре воздуха; пары кубовой жидкости детандируют с начальной температурой более высокой, чем температура начала детандирования первой части, т. к. с повышением начальной температуры детандирования растет теплоперепад на единицу потока в детандере. Наличие отличительных признаков приводит к увеличению выхода жидкого азота на единицу потока сжимаемого в компрессоре и соответственно уменьшению удельных энергозатрат.

Проведенный анализ уровня техники позволил установить, что заявителем не обнаружен аналог, характеризующийся признаками идентичным всем признакам заявленного изобретения, следовательно соответствует критерию "новизна", сравнение существенных признаков предложенного способа и известных решений дает основание считать, что предложено техническое решение отвечает критериям "изобретательский уровень" и "промышленная применимость".

На чертеже изображена схема установки, позволяющая реализовать предложенный способ.

Установка состоит из компрессора I с выходящим из него потоком 2, тормозных газодувок 3 и 4 выходящими потоками 5 и 6, блока комплексной очистки 7, соединенного потоком 8 через теплообменники 9, 10, 11 с теплообменниками 12, поток 13 соединяет теплообменник 12 с колонной 14. Теплообменник 11 потоком 15 соединен с турбодетандером 16. Турбодетандер 16 потоком 17 соединен с отделителем жидкости 18. Нижняя часть колонны 14 потоком кубовой жидкости 19 соединена с конденсатором 20, теплообменниками 12, 11 и 10 и турбодетандером 21. Турбодетандер 21 потоком 22 соединен с теплообменниками 10 и 9. Колонна 14 потоком 23 соединена с отделителем жидкости 18. Отделитель жидкости 18 потоками 24 и 25 соединен с переохладителем азота 26. Поток 27 соединяет отделитель жидкости 18 и переохладитель азота 26 с теплообменниками 12, 11, 10, 9. Поток 28 отбор (дренаж) для обеспечения проточности из конденсатора 20.

Способ получения жидкого азота осуществляется следующим образом: Воздух поток 2 сжимают в компрессоре 1 до давления 0,7 1 МПа, разделяют на два потока и сжимают в газодувках 3 и 4 до давления 0,9 1,3 МПа потоки 5 и 6 очищают от влаги, углекислоты и других растворимых в воздухе примесей в блоке комплексной очистки (БКО) 7. Воздух поток 8 охлаждают в теплообменниках 9, 10, 11 и разделяют на два потока.

Первую часть воздуха поток 15 расширяют в турбодетандере 16. Поток 17 парожидкостная смесь, жидкость отделяют и испаряют за счет охлаждения потока азота потока 23 в отделитель-испарителе 18.

Вторую часть воздуха поток 13 направляют в колонну 14, где разделяют на кубовую жидкость поток 19 и жидкий азот-поток 23.

Поток 19 испаряют в конденсаторе 20, нагревают последовательно в теплообменниках 12, 11, 10, расширяют в детандере 21 поток 22 и подогревают в теплообменниках 10 и 9. Небольшой поток 28 отводится из конденсатора 20 для обеспечения проточности.

Жидкий азот поток 23 охлаждают в отделителе-испарителе 18 и разделяют на два потока. Большая часть поток 24 охлаждают за счет испарения меньшей части потока 25 в переохладителе 26 и выводят из установки в качестве продукта. Поток 25 присоединяют к потоку 17 и поток 27 подогревают в теплообменниках 12, 11, 10, 9.

Пример конкретного выполнения способа. Воздух-поток 2 сжимают в компрессоре 1 до давления 0,84 МПа, разделяют на два потока и сжимают в газодувке 3 0,612 м33 п. в. в газодувке 4 0,373 м33 п. в. до давления 1,16 МПа. Поток 8 0,985 м33 п. в. воздуха (здесь и далее считаем, что утечка в машинах расширения 16, 21 и дожатия 3, 4 составляют 1,5 от потока на входе) очищают от влаги, углекислоты и других растворимых в воздухе примесей в БКО 7. Воздух-поток 8 охлаждают с 295 К в теплообмениках 9, 10, 11 соответственно до 251,1 К, 176,7 К, 133 К и разделяют на два потока.

Первую часть воздуха 0 622 м33 п. в. расширяют в турбодетандере 16 с 1,1 МПа до давления 0,12 МПа. Поток 17 парожидкостная смесь 0,613 м33 п. в. содержащая 2,58 жидкости. Жидкость отделяют и испаряют в отделителе-испарителе 18.

Вторую часть воздуха 0,363 м33 п. в. поток 13 - направляют в колонну 14, где разделяют на кубовую жидкость 0,2617 м33 п. в. поток 16 содержащую 28,7 О2 и жидкий азот поток 23. Поток 19 при температуре 102,8 К и давлении 0,596 МПа испаряют в конденсаторе 20, нагревают последовательно в теплообменниках 12, 11, 10 соответственно до 119,2 К, 172,7 К, 240 К, расширяют в турбодетандере 21 с 240 К, 0,565 МПа до 0,125 МПа, 172,7 К. Поток 22 0,257 м33 п. в. подогревают в теплообмениках 10 и 9 соответственно до 240 К и 290,5 К. Для обеспечения проточности из конденсатора 20 отводится небольшой поток 0,001 м33 п. в. поток 28.

Жидкий азот поток 23 0,1016 м33 п.в. с концентрацией 1 О2 и температурой 105,3 K, охлаждают в отделителе-испарителе 18 до 90,5 К и разделяют на два потока. Большую часть поток 24 0,0923 м33 п. в. охлаждают до 82 К за счет испарения меньшей части - потока 25 0,0093 м33 п. в. в переохладителе 26 и выводят из установки в качестве продукта. Поток 25 присоединяют к потоку 17, поток 27 0,622 м33 п. в. подогревают последовательно в теплообмениках 12, 11, 10 и 9 соответственно до 119,2 К, 172,7 К, 240 К и 290,5 К.

В конкретном примере удельный теплоперепад на потоке кубовой жидкости при расширении с 240 К и 0,565 МПа до 0,125 МПа 1924 Дж/моль, а при детандировании воздуха с 1,0 МПа до 0,12 МПа, но с начальной температурой 133 К, теплоперепад на потоке воздуха 1324 Дж/моль, Т. е. даже при меньшей степени расширения, но благодаря более высокой начальной температуре, теплоперепад на потоке кубовой жидкости в 1,45 раза (1924/1324) больше, чем на потоке воздуха.

В описанном примере холодопроизводительность в детандере 21 составляет - 37 от общей холодопроизводительности детандеров.

Давление за детандером 21 принято больше, чем за детандером 16, т. к. большая часть потока 22 после теплообменника 9 используется для регенерации БКО 7.

При температуре изотермического сжатия 300 К, КПД изотермического сжатия 0,65, КПД адиабатического расширения в детандерах 16 и 21 соответственно 0,8 и 0,79, утечках в машинах расширения и дожатия 1,5 на колесо и температуре жидкого азота 82 К удельные затраты энергии в компрессоре 0,9 кВт ч/кг. Если утечки в машинах дожатия и расширения будут сведены к нулю (по последним данным утечки могут быть приближены к нулю ), удельный расход энергии в компрессоре будут 0,85 кВт-ч/кг.

Формула изобретения

Способ получения жидкого азота методом низкотемпературной ректификации, включающий охлаждение воздуха, разделение его в процессе охлаждения на две части, первую из которых детандируют и возвращают на охлаждение воздуха, а вторую направляют на ректификацию с получением азота и кубовой жидкости, которую испаряют, а пары направляют на охлаждение воздуха, отличающийся тем, что в процессе охлаждения воздуха пары кубовой жидкости детандируют и возвращают на охлаждение воздуха, при этом детандирование паров кубовой жидкости ведут с начальной температурой, более высокой, чем температура начала детандирования первой части воздуха.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к области разделения газовых смесей методом низкотемпературной ректификации

Изобретение относится к области управления ректификационными колоннами и может быть использовано для автоматического регулирования концентрации продукционного кислорода в установках разделения воздуха для получения кислорода с заданной концентрацией

Изобретение относится к технике получения продуктов разделения методом низкотемпературной ректификации и может быть использовано в химической и других отраслях промышленности

Изобретение относится к криогенной технике и может быть использовано в химической и металлургической промышленности в цехах комплексного разделения воздуха

Изобретение относится к химической промышленности, в частности к способам разделения воздуха методом низкотемпературной ректификации и может быть использовано в химической, металлургической и других отраслях промышленности

Изобретение относится к способу низкотемпературного разделения воздуха, при котором очищенный и охлажденный воздух вводится в дистилляционную систему, имеющую по меньшей мере одну ректификационную колонну, и там ректифицируется путем противоточного массообмена между паровой и жидкостной фазами, причем массообмен по меньшей мере в одном участке по меньшей мере одной ректификационной колонны осуществляется посредством насадки, а также к устройству для разделения воздуха для осуществления этого способа

Изобретение относится к области криогенной техники, в частности к технике получения кислорода методом низкотемпературной ректификации

Изобретение относится к криогенной технике и может быть использовано при разделении воздуха методом низкотемпературной ректификации на воздухоразделительных установках, предназначенных для получения продуктов разделения воздуха в жидком виде

Изобретение относится к областям металлургической, химической, нефтяной промышленности и касается способов получения газообразных кислорода и азота из воздуха

Изобретение относится к области криогенной техники, получения азота, сжиженного природного газа и криогенных газовых холодильных машин, работающих по циклу Стирлинга

Изобретение относится к области криогенной техники по ожижению воздуха и криогенных холодильных машин, работающих по обратному циклу Стирлинга
Наверх