Способ получения волластонита

 

Изобретение относится к способу получения синтетического волластонита, применяемого в качестве наполнителя для производства фрикционных материалов, керамики, красок, бумаги, пластмасс, резинотехнических изделий. Сущность способа заключается в плавлении смеси отходов производства фосфорных удобрений и фтористого алюминия или кварцевого песка в присутствии серы, углерода, сульфата цинка, фосфата кальция при соотношении CaO/SiO2, равном 0,9/1; C/SiO2, равном 0,10 - 0,14/1; S/SiO2, равном 0,1 - 0,2/1; P2O5/SiO2, равном 0,05 - 0,06/1; ZnO/SiO2, равном 0,02 - 0,04/1, резком охлаждении расплава и термической обработке гранул в окислительной среде при 830 - 920oC в течение 80-90 мин. Способ позволяет получить игольчатый волластонит с длиной иголок 250 - 300 мкм, характеристическим соотношением l/d > 30 и выходом 96-97%. 1 з.п. ф-лы, 6 табл.

Изобретение относится к производству синтетического игольчатого волластонита с характеристическим отношением длины кристалла к диаметру l/d больше 20, применяемого в качестве наполнителя при производстве высокоэффективных фракционных материалов, керамики, пигментов, целлюлозных и резинотехнических изделий.

Известен способ получения волластонита из фосфорных шлаков, включающий плавление фосфорного шлака, резкое охлаждение расплава в воде и термическую обработку гранул при температуре 1150-1200oC в окислительной атмосфере. Выход кристаллического волластонита, в основном таблитчатой структуры не превышает 85% [1] Недостаткам способа являются высокая температура обработки гранул, низкий выход волластонита и таблитчатость структуры кристаллов волластонита.

Техническим результатом, на достижение которого направлено изобретение, является получение волластонита игольчатой структуры, а также уменьшение температуры термообработки гранул, что снижает энергоемкость процесса.

Результат достигается тем, что в способе получения волластонита, включающем плавление смеси из SiO2- и CaO- содержащих компонентов с добавками, резкое охлаждение расплава и термическую содержащего компонента используют кварцевый песок или отходы производства фтористого алюминия, в качестве CaO- содержащего компоненты применяют отходы производства фосфорных удобрений, плавку ведут в присутствии серы, углерода, сульфата цинка, фосфата кальция при соотношении в шихте CaO/SiO2, равном 0,9/1; C/SiO2, равном 0,10-0,14/1; S/SiO2, равном 0,1-0,2/1; P2O5/SiO2, равном 0,05-0,06/1; ZnO/SiO2, равном 0,02-0,04/1. Термическую обработку гранул осуществляют при температуре 830-920oC в течение 80-90 мин.

Предлагаемый способ позволяет получить игольчатый волластонит с длиной иголок 250-300 мкм, характеристическим соотношением l/d>30 и выходом 96-97% термообработку гранул проводить в одну стадию, а также снизить время и температуру термической обработки гранул.

Введение серы и углерода в шихту в соотношении C/SiO2=0,1-0,14/1; S/SiO2= 0,1-0,15/1 создают условия для получения максимального количества кристаллической фазы игольчатого волластонита. Так при соотношении в шихте C/SiO2 и S/SiO2 меньше соответственно 0,1-0,14/1 и 0,1-0,15/1 остаточное содержание S2-в расплаве становится таковым, что снижается выход и длина кристаллов игольчатого волластонита, а при соотношении C/SiO2>0,14/1 и S/SiO2>0,2/1, кристаллизация становится самопроизвольной, что сказывается прежде всего на фазовом составе и количество игольчатого волластонита снижается.

Кроме того введение серы и углерода обеспечивает более глубокую диссоциацию фосфогипса и позволяет снизить температуру в реакционной зоне печи до 1250oC. Эффективность такого технологического решения определяется тем, что условия силикатообразования близки к условиям сульфидообразования. При этом пары элементарной серы, газообразные сульфиды CaS и CS2 повышают концентрацию сернистого ангидрида в газовой фазе и увеличивают скорость разложения фосфогипса за счет выделения тепла при реакции горения, повышают температуру в реакционной зоне печи, обеспечивая тем самым снижение энергозатрат на получение силикатной массы нужного состава.

Введение фосфата кальция в шихту в соотношении P2O5/SiO2, равном 0,05-0,06/1 позволяет не менять характера фазовых превращений при кристаллизации игольчатого волластонита, но сдвигает процесс кристаллизации в более низкотемпературную область, обеспечивает снижение температуры термообработки гранул.

При соотношение P2O5/SiO2<0,05/1 в шихте и температуре кристаллизации 900oC выход и длина кристаллов игольчатого волластонита снижается. Соотношение P2O5/SiO2 > 0,06/1 не сказывается на технологических параметрах процесса.

Введение сульфата цинка при соотношении в шихте ZnO/SiO2 меньше 0,02/1, не оказывает каталического воздействия на процессе кристаллизации игольчатого волластонита, длина кристаллов волластонита не превышает 100 мкм, а выход снижается до 80% Введение сульфата цинка при соотношении в шихте ZnO/SiO2, равном 0,02-0,04/1 способствует кристаллизации игольчатого волластонита с длиной игл 300 мкм.

Введение сульфата цинка в шихту при соотношении ZnO/SiO2 больше 0,03/1 не влияет на характеристику готовой продукции.

Примеры осуществления способа.

Исходными материалами для получения волластонита служили: отход производства фосфорных удобрений следующего состава, мас. CaO= 39-41; SiO2=0,11-0,65; SO2=52-55; Na2O=0,2; P2O5=0,8-2,0; F=0,2-0,6; Al2O3= 0,1-0,23; Fe2O3=0,1-0,25; SrO=1,6-2,1; отход производства фтористого алюминия следующего состава, SiO2=80; F=5-8; Al2O3=3-8; п.п.п.4-12; угольная пыль техническая; сера элементарная техническая; сульфат цинка технический; фосфат кальция технический.

Пример 1 (оп. 1, табл. 1).

В алундовый тигель помещают 100 г шихты, содержащей отходы производства фосфорных удобрений, отходы производства фтористого алюминия, угольную пыль, серу, фосфат кальция и сульфат цинка при соотношении CaO/SiO2, равном 0,9/1,0; C/SiO2, равном 0,06/1,0; S/SiO2, равным 0,2/1; ZnO/SiO2, равном 0,04/1,0; P5O3/SiO2, равном 0,06/1,0.

Плавку осуществляют в муфельной печи при температуре 1250oC в течение одного часа. Полученный силикатный расплав резко охлаждают в воде и подвергают термической обработке (кристаллизации) в одну стадию при температуре 900oC в течение 1,5 часов.

Пример 2 (оп. 2-4, табл. 1).

По схеме, описанной в примере 1, соотношение углерода к оксиду кремния соответственно составляло 0,1/1; 0,14/1; 0,2/1.

Пример 3 (оп. 5-11, табл. 2).

По схеме, описанной в примере 1, соотношение углерода к оксиду кремния составляло 0,14/1, а серы к оксиду кремния соответственно 0/1; 0,05/1; 0,1/1; 0,15/1; 0,2/1; 0,25/1; 0,3/1.

Пример 4 (оп. 12-16, табл. 3).

По схеме, описанной в примере 1, соотношение содержания углерода к оксиду кремния составляет 0,14/1, серы 0,15/1, а добавки фосфата кальция осуществляются до соотношения в шихте 0,04/1; 0,045/1; 0,05/1; 0,055/1; 0,06/1.

Пример 5 (оп. 17-21, табл. 4).

По схеме, описанной в примере 1, соотношение содержаний C, S, P2O5 и ZnO к оксиду кремния составляет: угольной пыли 0,14/1,
элементарной серы 0,15/1,
остаточной P2O5 0,06/1,
сульфата цинка 0,005/1; 0,01/1; 0,02/1; 0,03/1; 0,04/1.

Пример 6 (оп. 22-25, табл. 5).

По схеме, описанной в примере 5 (оп. 19), продолжительность кристаллизации (термообработка гранул) составляла 60, 80, 90, 100 мин.

Пример 7 (оп. 26-30, табл. 6).

По схеме, описанной в примере 6 (оп. 24), температура кристаллизации составляла, град. C: 830, 860, 890, 920, 950.

Пример 8.

Исходными материалами для получения волластонита служили:
отход производства фосфорных удобрений состава, CaO=39-41; Na2O=0,2; SiO2= 0,11-0,65; SO2= 52-55; P2O5=0,8-2,0; F=0,2-0,6; Al2O3=0,1-0,23; Fe2O3= 0,1-0,25; SrO=1,6-2,1.

песок состава: SiO2=98,81; Fe2O3=0,132; ппп=1,058, при соотношении: CaO/SiO2, равном 0,9/1; C/SiO2, равном 0,14/1; S/SiO2, равном 0,15/1; ZnO/SiO2, равном 0,02/1; P2O5/SiO2, равном 0,06/1.

Плавку осуществляют в алундовых тиглях в муфельной печи при температуре 1300oC в течение 1 ч. Полученный силикатный расплав резко охлаждают и подвергают термической обработке (кристаллизации) при температуре 900oC в течение 1,5 ч. В результате получают волластонит игольчатой структуры с выходом 97 и длиной волокон 295 мкм.

Полученные продукты в примерах 1-8 изучали рентгенографическим и кристаллооптическим методами. Во всех продуктах присутствует низкотемпературная форма волластонита игольчатой структуры.


Формула изобретения

1. Способ получения волластонита, включающий плавку смеси из SiO2- и CaO-содержащих компонентов, резкое охлаждение расплава и термическую обработку гранул в оксилительной атмосфере, отличающийся тем, что в качестве SiO2-содержащего компонента используют отходы производства фтористого алюминия или кварцевый песок, а в качестве CaO-содержащего компонента отходы производства фосфорных удобрений, при этом плавку ведут в присутствии серы, углерода, фосфата кальция и сульфата цинка, а термическую обработку гранул осуществляют при 830 920oС в течение 80 90 мин.

2. Способ по п.1, отличающийся тем, что плавку проводят при соотношении компонентов в смеси C SiO2 0,1 0,14 1; S SiO2 0,1 - 0,2 1; ZnO SiO2 0,02 0,04 1; P2O5 SiO2 0,05 0,06 1; CaO SiO2 0,9 1.3

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способу получения волластонита и может быть использовано при производстве пигментов, пластмасс, резино-технических изделий, бумаги, адсорбентов, косметических средств и керамики

Изобретение относится к промышленности строительных материалов и может быть использовано при производстве керамических плиток и фарфоро-фаянсовых изделий

Изобретение относится к способам получения волластонита, используемого в качестве сырья для производства высококачественной керамики, фарфоровой посуды, акустических плиток, в качестве добавки при производстве пластмасс, эластомеров, феноловых смол, и позволяет повысить чистоту продукта при сохранении его высокой белизны

Изобретение относится к способам получения дисиликата кальция, применяемого в качестве адсорбента, фильтрующего порошка, силикатного наполнителя, пигмента, и позволяет повысить чистоту продукта и упростить процесс

Изобретение относится к способам получения дисиликата кальция, применяемого в качестве адсорбента, фильтрующего порошка, силикатного наполнителя, пигмента, и позволяет повысить чистоту продукта и упростить процесс

Изобретение относится к способам получения волластонита, применяемого в качестве сырья для производства высококачественной керамики, фарфоровой посуды, акустических плиток, в качестве добавки при производстве пластмасс, эластомеров, феноловых смол, и позволяет повысить белизну продукта

Изобретение относится к способам получения гидроксилэллестадита, применяемого вкачестве наполнителя в химической промьгашенности, позволяет повысить выход продукта и сократить время кристаллизации

Изобретение относится к способам получения синтетического волластонита, применяемого в качестве сырья для производства высококачественной керамики, акустических плиток, фарфоровой посуды, и позволяет повысить чистоту целевого продукта

Изобретение относится к способу получения метасиликатов металлов, применяемых в оптическом стекловарении

Изобретение относится к технологии получения силикатов, используемых в качестве модифицирующих наполнителей композиционных материалов химической промышленности (лаков, красок, резины и т.д.), а также в виде эффективного заменителя природных облицовочных камней

Изобретение относится к получению шихты для синтеза волластонита, используемого в качестве наполнителя при изготовлении строительных материалов, красок, высокопрочного цементного раствора, а также пластмасс, бумаги и т.д

Изобретение относится к способам получения силикатов кальция из отходов производств фосфорных удобрений и фтористого алюминия, включающим стадию образования гидросиликата кальция и его прокаливание для получения волластонита

Изобретение относится к способу осаждения различных форм кремнезема из гидротермального сепарата, который может применяться в условиях ГеоЭС, ГеоТЭС и на гидротермальных месторождениях

Изобретение относится к отвержденной форме силиката кальция, которая в основном содержит тоберморит и демонстрирует картину дифракции рентгеновских лучей на порошке, в которой интенсивность дифракционного пика Ib, приписываемого плоскости (220) тоберморита, и минимальная интенсивность дифракции Ia, наблюдаемая в диапазоне углов дифракции между двумя дифракционными пиками, приписываемыми соответственно плоскости (220) и плоскости (222) тоберморита, удовлетворяет отношению Ib/Ia 3,0; демонстрирующая дифференциальную кривую распределения размеров пор, полученную с помощью ртутной порометрии, в котором логарифмическая ширина распределения диаметров пор, как измерено на высоте 1/4 от высоты максимального пика дифференциальной кривой распределения размеров пор, составляет от 0,40 до 1,20, а также описывается композитная структура армированного силиката кальция и способы для ее производства

Изобретение относится к области медицины, а именно к производству лекарственных средств

Изобретение относится к области химии, а именно к механохимическим способам получения нанокристаллического кремний-замещенного гидроксилапатита, являющегося биологически активным материалом, который может быть использован для покрытия металлических и керамических имплантатов, в качестве наполнителя для восстановления дефектов костной ткани при изготовлении медицинской керамики и композитов для стоматологии и челюстно-лицевой хирургии, а также лечебных паст
Наверх