Способ монтажа судового валопровода

 

Использование: судостроение. Сущность изобретения: способ монтажа судового валопровода заключается в том, что центровку валопровода производят путем перемещения подшипников по высоте с контролем положения подшипников по нагрузкам, а центровку валопровода с главным двигателем производят по взаимному положению их смежных валов. Измеряют изгибающий момент и перерезывающую силу на фланцевом соединении валопровода и главного двигателя для холодного и нагретого до рабочей температуры двигателя с помощью датчиков относительной деформации или датчиков перемещений, установленных симметрично относительно фланцевого соединения. В процессе измерения датчики устанавливаются в верхнее положение, фиксируются значения относительных деформаций, валы проворачиваются на 180o и повторно фиксируются значения относительных деформаций. Значения изгибающего момента и перерезывающей силы вычисляются. 1 з. п. ф-лы, 1 ил.

Изобретение относится к судостроению, в частности к способам монтажа судового валопровода.

В качестве наиболее близкого аналога выбран способ монтажа судового валопровода, при котором центровку валопровода производят путем перемещения подшипников по высоте с контролем положения подшипников по нагрузкам и фиксацией подшипников в заданном положении, а центровку валопровода с главным двигателем производят по взаимному положению их смежных валов.

Недостатком существующего способа при центровке валопровода с главным двигателем (ГД) является недостаточная чувствительность микрометрических индикаторов, т.к. фактические деформации в валах достигают значений 10-9 м, а чувствительность индикаторов 10-6 м. По способу аналога вычисление изгибающих моментов и перерезывающих сил предусматривается производить для валов одного диаметра, но в большинстве случаев диаметры сопрягаемых валов валопровода и ГД неравны. Кроме того, диаметры фланцев могут превышать 1000 мм, а с учетом маховика, который для двигателей типа ДКРН крепится непосредственно на фланец ГД, 2000 мм, что делает невозможным использование стоек. Более того, способ центровки валопровода по нагрузкам является менее трудоемким и более точным, чем в способе-аналоге, а при измерении нагрузки на подшипниках с помощью силоизмерительных устройств, устанавливаемых под шейки валов в непосредственной близости от подшипника, даже не требуется удалять болты крепления. Вышесказанное позволяет сделать вывод о том, что выполнение центровки по способу-аналогу увеличивает погрешность измерений, а также трудоемкость монтажных работ.

Техническим результатом изобретения является повышение долговечности и надежности валопровода и ГД за счет повышения качества выполнения монтажных работ и обеспечения более равномерной нагрузки на подшипниках валопровода и ГД.

Он достигается тем, что в способе монтажа судового валопровода, при котором центровку валопровода производят путем перемещения подшипников по высоте с контролем положения подшипников по нагрузкам и фиксацией подшипников в заданном положении, а центровку валопровода с главным двигателем производят по взаимному положению их смежных валов, при центровке валопровода с главным двигателем на шейке валов валопровода и главного двигателя на расстоянии не более 100 мм и симметрично относительно фланцевого соединения устанавливают датчики относительной деформации или датчики перемещения, проворачивают валы до установки датчиков в верхнее положение, фиксируют значения относительных деформаций, повторно проворачивают валы на 180o, повторно фиксируют значения относительных деформаций, после чего определяют значения изгибающего момента и перерезывающей силы в сечении фланцевого соединения валопровода и главного двигателя из следующих соотношений: Mi=E(Di-di)/32 M K1(M2 + M1)/2 Q K2(M2 M1)L, где Mi вычисляемое значение изгибающего момента в районе установки i-го датчика, Н м; E модуль упругости материала валов, Па; относительная деформация; Di и di наружный и внутренний диаметры валов в i-ом сечении м; K1 и K2 коэффициенты пропорциональности; М изгибающий момент в измеряемом сечении, Н м;
Q перерезывающая сила в измеряемом сечении, Н;
L расстояние между 1 и 2 датчиками, м.

Кроме того, измерения изгибающего момента и перерезывающей силы для учета эксплуатационных перемещений подшипников коленчатого вала вследствие нагрева корпуса двигателя производят для холодного и нагретого до рабочей температуры двигателя.

Изобретение иллюстрируется чертежом, где 1 валопровод, 2 коленчатый вал ГД, 3 опорные подшипники промежуточных валов, 4 базовая ось валопровода, 5 фланцевое соединение валопровода с ГД, 6 датчики.

Предлагаемый способ реализуется следующим образом.

Перед началом проверки центровки валопровода с ГД производят центровку валопровода путем перемещения подшипников промежуточных валов по высоте относительно базовой оси с контролем нагрузок на подшипниках при помощи динамометров и окончательно собирают фланцевое соединение валопровода с ГД.

На шейки промежуточного вала валопровода и упорного вала ГД в районе их фланцевого соединения устанавливают датчики. Проворачиваются валы до установки датчиков в верхнее положение и фиксируются значения относительных деформаций.

Валы повторно проворачиваются на 180o и значения относительных деформаций фиксируются повторно.

Вычисляются значения изгибающего момента и перерезывающей силы на фланцевом соединении валопровода и ГД в сечении фланцевого соединения по эмпирической формуле и сравниваются с допускаемыми значениями.


Формула изобретения

1. Способ монтажа судового валопровода, при котором центровку валопровода производят путем перемещения подшипников по высоте с контролем положения подшипников по нагрузкам и фиксацией подшипников в заданном положении, а центровку валопровода с главным двигателем производят по взаимному положению их смежных валов, отличающийся тем, что при центровке валопровода с главным двигателем на шейки валов валопровода и главного двигателя на расстоянии не более 100 мм и симметрично относительно фланцевого соединения устанавливают датчики относительной деформации или датчики перемещения, проворачивают валы до установки датчиков в верхнее положение, фиксируют значения относительных деформаций, повторно проворачивают валы на 180o, повторно фиксируют значения относительных деформаций, после чего определяют значения изгибающего момента и перерезывающей силы в сечении фланцевого соединения валопровода и главного двигателя из следующих соотношений:

где Mi вычисляемое значение изгибающего момента в районе установки i-го датчика, Нм;
E модуль упругости материала валов, Па;
- относительная деформация;
Di,di наружный и внутренний диаметры валов в i-м сечении, м;
K1 и K2 коэффициенты пропорциональности;
М изгибающий момент в измеряемом сечении, Нм;
Q перерезывающая сила в измеряемом сечении, Н;
L расстояние между первым и вторым датчиками, м.

2. Способ по п.1, отличающийся тем, что измерения изгибающего момента и перерезывающей силы для учета эксплуатационных перемещений подшипников коленчатого вала вследствие нагрева корпуса двигателя производят для холодного и нагретого до рабочей температуры двигателя.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к судостроению, в частности, к корабельным энергетическим установкам

Изобретение относится к судостроению, в частности к гребным валам судов

Изобретение относится к судостроению, в частности к производству судовых валопроводов

Изобретение относится к судостроению и может быть использовано при монтаже опор гребных валов

Изобретение относится к судостроению, в частности к оборудованию для центровки судовых валопроводов

Изобретение относится к области судостроения и судоремонта и может найти применение при ремонте судов для съема судовых винтов, а также других массивных деталей с их валов

Изобретение относится к области судостроения и может быть использовано на судах для уплотнения гребных валов, а также в общем машиностроении в качестве уплотнения вращающихся вертикальных и горизонтальных валов насосов

Изобретение относится к судостроению, и используется для обеспечения герметичности мест выхода валовых линий через переборки

Изобретение относится к области судостроения и может быть использовано при изготовлении гребных устройств для крупнотоннажных морских судов

Изобретение относится к системам распределения энергии, которые могут быть использованы на морских судах и подводных лодках

Изобретение относится к области судостроения и может быть использовано на надводных судах и подводных объектах для уплотнения валов движительных установок, а также в машиностроении в качестве уплотнения вращающихся валов насосов, работающих, прежде всего в импульсных режимах с длительной готовностью в режиме ожидания. Уплотнение вала содержит основное уплотнение, силовой эластичный элемент с уплотнительным кольцевым элементом, взаимодействующим с ответным уплотнительным элементом и образующим с ним торцевой уплотнительный узел и аварийное торцевое уплотнение. Силовой эластичный элемент выполнен в виде неподвижно и герметично закрепленной по внешнему контуру металлической мембраны с расположенным на ее внутреннем, охватывающем вал контуре ответным, жестко закрепленным на валу уплотнительным кольцевым элементом и образующим с ним стояночное, нагруженное внешним усилием торцевое уплотнение повышенной теплостойкости. Уплотнение вала дополнительно включает дистанционно управляемый привод раскрытия стояночного торцевого уплотнения, а аварийное торцевое уплотнение выполнено нормально раскрытым и содержит температуростойкие взаимодействующие кольцевые уплотнительные элементы на торцевой поверхности входного для вала отверстия и примыкающей к ней торцевой стенке вала. Вал выполнен с возможностью его перемещения вдоль оси и снабжен упорным, воспринимающим внешнее усилие подшипником с устройством аварийного его раскрепления от продольного смещения. Технический результат: повышение надежности и устойчивости уплотнения вала путем совершенствования его конструкции, в том числе и за счет использования взаимодействующих уплотнительных элементов из теплостойких материалов, и повышение ремонтопригодности. 1 ил.

Изобретение относится к судостроению, а именно к способу и устройству защиты расположенного в обтекателе электродвигателя для приведения в движение морских судов от изгиба вала при ударах. Способ и устройство для защиты расположенного в обтекателе электрического двигателя для приведения в движение морских судов от изгиба вала при ударах, когда лопасти винта обтекателя ударяют об обломки льда или другие жесткие объекты. Двигатель имеет приводной вал, ротор и статор, а указанные удары ведут к моментальному изгибу приводного вала до такой степени, что ротор может войти в контакт со статором. Ротор удерживается от вхождения в опасный контакт со статором путем обеспечения по меньшей мере двух элементов, которые вместе образуют радиальный подшипник скольжения. Радиальный подшипник скольжения имеет сопрягающиеся дугообразные несущие поверхности, которые отделены друг от друга непроводящим промежутком во время нормальной работы двигателя и входят в контакт друг с другом только при кратковременных экстремальных нагрузках. Достигается предотвращение опасного контакта между ротором и статором в расположенном в обтекателе двигателе для морских судов. 2 н. и 20 з.п. ф-лы, 3 ил.

Изобретение относится к судостроению, а именно к винтовым движителям с предохранительной муфтой для использования в подвесных лодочных моторах. Гребной винт с предохранительной муфтой содержит корпус-ступицу гребного винта, штифт-шпонку и ведущую и ведомую полумуфты. Ведущая полумуфта надета на гребной вал, входит в зацепление и воспринимает крутящий момент гребного вала. Ведомая полумуфта соединена с корпусом-ступицей гребного винта и передает крутящий момент на гребной винт. Ведущая и ведомая полумуфты обращены друг к другу своими торцами. Совместное отверстие в полумуфтах под штифт-шпонку проходит через торцевые поверхности полумуфт. Ось отверстия расположена параллельно или под углом до 15-20° к оси гребного винта. Штифт-шпонка расположен в отверстии одновременно в ведомой и ведущей полумуфтах для передачи крутящего момента между полумуфтами. Достигается простота замены штифта-шпонки и установки гребного винта на гребной вал. 6 з.п. ф-лы, 1 ил.
Наверх