Способ обнаружения негерметичности замкнутых технологических систем и резервуаров

 

Использование: изобретение относится к технике испытаний резервуаров и замкнутых систем на герметичность с помощью жидких веществ, в частности, на АЭС и используется при нахождении дефектного резервуара или технологической системы, если источник протечки установить затруднительно. Сущность: поочередно вводят в технологические системы и резервуары следящий радиоактивный индикатор - тритиевую воду, причем в резервуары вводят с помощью трубки длиной, равной высоте столба воды в резервуаре, заполненной раствором тритиевой воды, заглушая один конец трубки, опуская открытый конец до дна резервуара, освобождая заглушенный конец и постепенно поднимая трубку из резервуара, а в технологическую систему тритиевую воду вводят любым известным способом и после каждого введения по увеличению концентрации трития в контролируемом потоке судят о негерметичности данной технологической системы или резервуара. 2 табл.

Изобретение относится к технике испытаний резервуаров и замкнутых систем на герметичность с помощью жидких веществ, в частности, на АЭС и используется при нахождении дефектного резервуара или технологической системы, если источник протечки установить затруднительно. Такие задачи возникают, например, в тех случаях, когда резервуары или системы забетонированы или заглублены либо расположены в затесненных помещениях, непосредственный визуальный контроль в которых невозможен.

Известен способ с использованием опорных узлов, к которым подсоединены датчики измерения деформации, возникающей при изменении уровня в контролируемых емкостях (патент США N 4813275 "Способ и устройство для определения утечки из подземных резервуаров"). Известен также способ с контролем параметров объема полости, сообщающейся с контролируемым резервуаром (заявка Франции N 32630212 "Способ и устройство для измерения степени утечки из герметизированной емкости"). Однако эти способы не являются способами непосредственного контроля протечки, что является причиной существования погрешности, обусловленной использованием датчиков и средств измерений, сигнал которых зависит от величины измерения уровня жидкости в резервуарах. Это не позволяет определять малые протечки из резервуаров (мл/ч). Для обнаружения малых протечек требуется использование индикатора протечки, т.е. необходимо наличие вещества, находящегося в растворенном виде в резервуаре или технологической системе. Такие индикаторы известны, как правило, это химические вещества, обладающие окрашивающим эффектом, либо это радиоактивные вещества. Например, способ с использованием красителей приведен в а. с. СССР N 1439427 "Способ обнаружения течей в днищах наземных резервуаров", по которому раствор перманганата калия характерного цвета в кольцевом слое вокруг днища может проникать через неплотности в стыке днища и корпуса резервуара после того, как имитируется нагрузка столба жидкости на это днище.

Известен также способ с использованием индикаторной массы для контроля герметичности, при котором осуществляется цветовой переход индикатора (а. с. СССР N 1552031).

Однако использование красителей не является эффективным из-за сорбции этих веществ на поверхностях материалов, через которые просачивается жидкость, например бетон строительных конструкций и поверхности помещений. Кроме того, использование красителей ограничивается технологическими требованиями к содержимому резервуаров и технологических систем, не допускающими их применение в процессе эксплуатации оборудования.

Пропускающие стыки трубопровода определяют по "Способу определения утечек из трубопровода" (Вартазаров С.Я. Применение радиоактивных изотопов в гидравлических и гидрологических исследованиях. М. Атомиздат, 1967), по которому радиоактивное вещество вводят в трубопровод, поднимают давление в трубопроводе, снимают давление, измеряют мощность дозы от проб грунта, что дает возможность определять место утечки.

Способ применим только в процессе проверки оборудования на герметичность и не применим в процессе эксплуатации. В статическом варианте определения негерметичности трубопроводов трудность представляет операция равномерного распределения радиоактивного вещества по объему жидкости. Это же относится и к резервуарам, имеющим значительные габариты.

Наиболее близким техническим решением задачи определения негерметичности замкнутых технологических систем и резервуаров является "Способ обнаружения течи в охлаждающем контуре, встроенном в электрическую машину", заявка N 1362924, G01M3/20 Великобритания, 1974 г. по которому утечка обнаруживается добавлением индикатора типа гелия или трития к газу или воде, используемым для охлаждения и последующим обнаружением индикатора соответственно в воде или газе. В варианте использования трития его в виде тритированной воды добавляют к воде, используемой для охлаждения обмотки статора, и в случае протечки тритий обнаруживают с помощью счетчика, через который проходит водород из газонепроницаемого корпуса турбогенератора.

Этот способ применим, когда заранее предполагается, что источник протечки в газонепроницаемом корпусе охлаждающий водяной контур и утечка определяется только тогда, когда она локализована в корпусе. Если утечка вне корпуса, то по данному способу контур считается не имеющим протечки.

С целью устранения указанных недостатков в предлагаемом решении тритиевую воду вводят поочередно в технологические системы и резервуары, причем в резервуары вводят с помощью трубки длиной, равной высоте столба воды в резервуаре, заполненной раствором тритиевой воды, заглушая один конец трубки, опуская открытый конец до дна резервуара, освобождая заглушенный конец и постепенно поднимая трубку из резервуара, а в технологическую систему тритиевую воду вводят любым известным способом и после каждого введения по увеличению концентрации трития в контролируемом потоке судят о негерметичности данной технологической системы или резервуара.

Пример 1. Для проверки одного из возможных источников протечки в помещении бассейна выдержки (БВ) на герметичность заполнили трубку раствором тритиевой воды, заглушили один конец трубки, опустили открытый конец до дна бассейна, освободили заглушенный конец и постепенно подняли трубку. Включили циркуляцию воды в технологической системе БВ и с периодом 20 мин отобрали три пробы воды. Результаты измерений концентрации трития показали их совпадение, что говорит об эффективности перемешивания воды БВ и индикатора. В табл. 1 приведены данные по концентрации изотопов в воде таких технологических систем, как циркуляционный контур (ЦК), бассейн выдержки (БВ), бассейн выдержки технологических каналов (БВТК) и в протечке.

Из данных табл. 1 видно, что концентрация радионуклидов в протечке и в технологических системах различна и по ним невозможно судить об источнике протечки. Концентрация трития в ЦК и протечке одинакова, что говорит о возможном источнике. После введения тритированной воды в БВ концентрация трития увеличилась. В протечке же концентрация трития в пределах погрешности измерений осталась той же. Следовательно, БВ является герметичным. Позже при вскрытии боксов с оборудованием ЦК действительно был обнаружен дефект, являющийся причиной негерметичности ЦК.

Пример 2. В табл.2 приведены данные по концентрации трития в двух БВ, БВТК и протечке в технологическом помещении АЭС до введения и после введения трития в БВТК.

Из данных табл.2 видно, что при введении трития в БВТК концентрация трития в протечке увеличилась до величины концентрации в БВТК. Введение трития в другие системы не привело к изменениям концентрации в протечке. Таким образом, негерметичной системой является БВТК.

Данные примеры иллюстрируют невозможность определения негерметичности систем по известному способу и возможность использования для этой цели вводимого по заявляемому способу трития.

Предлагаемый способ прост в выполнении. Измерения сводятся к регистрации относительной активности трития. Метод отличает специфичность и точность определения негерметичной системы. Определению не мешает присутствие других элементов или химически активных сред, так как перед измерением пробы проходят стадию очистки методом дистилляции. Способ доступен и дешев. Для регистрации радиоактивности используют простую измерительную аппаратуру жидкостные радиометры всех типов. Радиационная безопасность обеспечивается применением низких индикаторных концентраций. Согласно "Санитарным нормам", использование изотопов в индикаторных количествах допускается при работе в обычных лабораторных условиях. Не требуется специальных мер безопасности, а также проведения дезактивационных работ, так как тритиевая вода испаряется как обычная. Поэтому использование предлагаемого способа позволяет определить негерметичность замкнутых технологических систем и резервуаров не только в атомной энергетике, но и в других отраслях народного хозяйства.

Формула изобретения

Способ обнаружения негерметичности замкнутых технологических систем и резервуаров, включающий введение в систему или резервуар следящего радиоактивного индикатора тритиевой воды и контроль в потоке протечки, отличающийся тем, что радиоактивный индикатор вводят поочередно в технологические системы и резервуары, причем в резервуары вводят с помощью трубки, длиной, равной высоте столба воды в резервуаре, заполненной раствором тритиевой воды, заглушая один конец трубки, опуская открытый конец до дна резервуара, освобождая заглушенный конец и постепенно поднимая трубку из резервуара, а в технологическую систему тритиевую воду вводят любым известным способом и после каждого введения по увеличению концентрации трития в контролируемом потоке судят о негерметичности данной технологической системы или резервуара.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к испытательной технике, а именно к контролю герметичности с помощью индикаторных составов, и может быть использовано в машиностроении для пневматического контроля герметичности сосудов и систем и для обнаружения утечки газов из систем, находящихся под давлением

Изобретение относится к контролю герметичности изделий и позволяет расширить эксплуатационные возможности путем обеспечения контроля изделий, не имеющих доступа к внутренней поверхности

Изобретение относится к способам контроля на герметичность с помощью радиоактивных индикаторов, Целью изобретения является снижение радиационной опасности и повышение надежности

Изобретение относится к испытаниям чзделий на герметичность и может быть использовано для выявления утечек аммиака с помощью химических средств

Изобретение относится к области поиска течей в изделиях, имеющих свободный объем, который перед герметизацией заполняется гелием

Изобретение относится к области испытательной техники и предназначено для контроля герметичности полых изделий, например роликов ленточных конвейеров

Изобретение относится к высокоэффективной жидкой среде с распределенными наночастицами для охлаждения ядерного реактора в качестве основного материала, с которым смешаны наночастицы, к способу и устройству для изготовления жидкой среды и к способу обнаружения утечки жидкой среды
Изобретение относится к средствам испытаний на герметичность днищ крупногабаритных резервуаров, в частности, на АЭС

Изобретение относится к средствам для испытания фильтров и может найти применение в любых отраслях промышленности, где они используются

Изобретение относится к области неразрушающего контроля и предназначено для использования в диагностике состояния механизмов и машин, испытывающих статические и динамические нагрузки и требующих повышенных мер контроля и обеспечения безопасности, например, погрузо-разгрузочных строительных машин (башенных кранов)

Изобретение относится к устройствам-течеискателям. Сущность: устройство содержит щуп (10), соединенный посредством шланга (11) через дроссель (D2) с вакуумным насосом (16), и датчик тестового газа (15). Выше по потоку от дросселя (D2) выполнена точка распределения (24). От точки распределения (24) к датчику (15) тестового газа ведет отвод (25). При этом дроссель (D2) выполнен в виде диафрагмы с круглым отверстием. Проводимость диафрагмы подобрана таким образом, что падение давления на диафрагме больше , где - промежуточное давление в точке распределения (24). Технический результат: создание течеискателя для работы методом щупа, на чувствительность обнаружения которого не оказывают влияние колебания скорости откачки вакуумного насоса. 4 з.п.ф-лы, 5 ил.

Изобретение относится к области исследований устройство на герметичность и может быть использовано для функциональной проверки течеискателя (20). Сущность: течеискатель (20) содержит датчик (21) парциального давления, входное отверстие (24) которого является входным отверстием течеискателя (20), камеру (22) обнаружения с селективно проницаемым для тестового газа окном (23). В камере (22) обнаружения размещен датчик давления для выдачи индикации, соответствующей парциальному давлению тестового газа. К течеискателю (20) подключают испытательное устройство (30), имеющее пространство (33) и изменяемым объемом и шкалу для наблюдения за размером этого пространства. Изменяя размер пространства (33) испытательного устройства (30), изменяют парциальное давление содержащегося в атмосферном воздухе тестового газа у входного отверстия (24) датчика (21) парциального давления. Проверяют, показывает ли течеискатель (20) изменение парциального давления. Технический результат: упрощение функциональной проверки течеискателя, снижение трудозатрат и затрат времени. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области испытания устройств на герметичность. Сущность: устройство включает в себя: масс-спектрометрическую трубку (2), выполненную с возможностью обнаружения газа для поиска утечки, и турбомолекулярный насос (3). Турбомолекулярный насос (3) имеет множество ступеней роторов (33) и статоров (34), поочередно размещенных в корпусе (31), причем роторы (33) прикреплены к вращающемуся валу (32). Кроме того, турбомолекулярный насос (3) включает в себя источник (35) привода, выполненный с возможностью приведения во вращение вращающегося вала (32). Впускное отверстие (36), сообщающееся с испытательным образцом (TP), и соединительное отверстие (37), с которым соединена масс-спектрометрическая трубка (2), отстоят друг от друга на поверхности (31а) стенки корпуса (31). Причем поверхность (31а) стенки обращена к ротору (33а) самой верхней ступени. Обнаружение утечки выполняется, побуждая газ для поиска утечки входить в масс-спектрометрическую трубку (2) изнутри испытательного образца (ТР). Технический результат: повышение чувствительности и оперативности при обнаружении утечки. 4 ил.
Наверх