Система для получения творческого искусственного интеллекта

 

Использование: изобретение относится к кибернетическим системам различного назначения и может быть использовано в адаптивных системах связи и обнаружении сигналов. Сущность: интеллектуальная система, обладающая ТИ, состоит из иерархических уровней = 0,1,2... и имеет K ячеек на каждом из этих уровней, взаимосвязанных между собой по цепям V и W. Ячейка иерархии = 0 содержит последовательно соединенные рецептор 1, вход которого является входом системы, сопоставитель 2, устройство, вырабатывающее управляющую плотность вероятности 8, генератор случайного процесса изменений знаний, сумматор с оперативной памятью 8, эффектор 3. Выход сопоставителя 2 соединен также с входом устройства, управляющего выбором генетических знаний 5, выход которого соединен с входом блока постоянной памяти 4, блок постоянной памяти 4 соединен двусторонней связью с сумматором с оперативной памятью 8, третий выход которого соединен с вторым входом сопоставителя 2. Ячейки иерархий 1 содержат последовательно соединенные взвешенный сумматор 9, устройство, вырабатывающее управляющую плотность вероятности 6, генератор случайного процесса изменений знаний 7, сумматор с оперативной памятью 8, который соединен двусторонней связью с блоком постоянной памяти 4. Второй вход блока постоянной памяти 4 через устройство, управляющее выбором генетических знаний, соединен с выходом взвешенного сумматора 9. Входы взвешенного сумматора 9 соединены с выходами сопоставителей 2 ячеек более низкой или такой же иерархии. Выходы сумматора с оперативной памятью 8 ячеек иерархий 1 соединены с вторыми входами устройства, вырабатывающего управляющую плотность вероятности 6 ячеек более низкой или такой же иерархии. Выход m в ячейках иерархии 1 показывает, что возможна передача знаний между различными системами, использующими одинаковые внутренние языки. 2 ил.

Изобретение относится к кибернетическим системам различного назначения и может быть использовано в адаптивных системах связи и обнаружения сигналов.

Творческий интеллект (ТИ), естественный (биологический) и искусственный (технический) продукт и свойство самоорганизующейся (самообучающейся) системы. Это способность адаптироваться в нестационарной окружающей среде, когда поведение технической системы не может быть полностью запрограммировано, а генетические данные, заложенные в биосистему, оказываются недостаточными. Это также способность к нелогическим действиям, к созданию аксиом, к получению существенно новых знаний (познанию) в отличие от генетического интеллекта (ГИ), где база знаний закладывается в интеллектуальную систему извне (наследственным путем в биосистемах, эвристическим программированием, экспертами в технических системах). ГИ способен лишь к логическим действиям выработке теорем и следствий из уже имеющихся знаний.

Известны два метода создания интеллектуальных систем (ИС): "модели понимания" (МП) и "нейронная кибернетика"(НК).

Эти методы можно описать выражением где vг вырабатываемые интеллектуальной системой ИС ГИ знания (действия), составляющие множество, куда входят знания о необходимых действиях на внешнюю среду и знания о цели этих действий; F[] программа работы ИС.

Способ МП используется во всех ЭВМ Тьюринга Неймана и соответствует явной форме выражения (1). Метод НК используется в нейрокомпьютерах (транспьютерах) и соответствует некоторой неявной форме выражения (1).

Описаны эти методы, например, в [1] Структурная схема устройства, реализующего данные методы, представлена на фиг.1, где 1 рецептор, преобразующий сигнал S внешней среды во внутренний язык ИС; 2 сопоставитель; 3 эффектор, преобразующий знания с внутреннего языка ИС в действия R; 4 блок постоянной памяти; 5 устройство, управляющее выбором генетических знаний из блока постоянной памяти.

Это устройство работает по заранее заданной программе F[] и не обеспечивает ТИ, т.к. невозможно полностью предсказать поведение среды.

Для получения творческого интеллекта предлагается система, представленная на фиг. 2, где 6 устройство, вырабатывающее управляющую плотность вероятности случайного процесса (t); 7 генератор случайного процесса изменений знаний; 8 сумматор с оперативной памятью; 9 взвешенный сумматор.

Интеллектуальная система, обладающая ТИ, состоит из иерархических уровней 0,1,2. и имеет K ячеек на каждом из этих уровней, взаимосвязанных между собой по цепям V и W.

Ячейка иерархии n 0 содержит последовательно соединенные рецептор 1, вход которого является входом системы, сопоставитель 2, устройство, вырабатывающее управляющую плотность вероятности 6, генератор случайного процесса изменений знаний 7, сумматор с оперативной памятью 8, эффектор 3. Выход сопоставителя 2 соединен также с входом устройства, управляющего выбором генетических знаний 5, выход которого соединен с входом блока постоянной памяти 4. Блок постоянной памяти 4 соединен двусторонней связью с сумматором с оперативной памятью 8, третий выход которого соединен с вторым входом сопоставителя 2.

Ячейки иерархий n1 содержат последовательно соединенные взвешенный сумматор 9, устройство, вырабатывающее управляющую плотность вероятности 6, генератор случайного процесса изменений знаний 7, сумматор с оперативной памятью 8, который соединен двусторонней связью с блоком постоянной памяти 4. Второй вход блока постоянной памяти 4 через устройство, управляющее выбором генетических знаний соединен с выходом взвешенного сумматора 9. Входы взвешенного сумматора 9 соединены с выходами сопоставителей 2 ячеек более низкой или такой же иерархии. Выходы сумматора с оперативной памятью 8 ячеек иерархий 1 соединены с вторыми входами устройств, вырабатывающих управляющую плотность вероятности 6 ячеек более низкой или такой же иерархий. Выход m в ячейках иерархии 1 показывает, что возможна передача знаний между различными системами, использующими одинаковые внутренние языки.

Работает устройство следующим образом.

Входные сигналы S в ячейке ТИ с 0 превращаются рецептором 1 в сигналы s внутреннего языка ИС. Преобразование может включать наперед заданную, т.е. генетическую фильтрацию входных сигналов. Сигналы s поступают на сопоставитель 2, где сравниваются со значениями , поступающими с сумматора с оперативной памятью 8. Сравнение заключается в определении подходящего в метрике расстояния между ними. Минимальное расстояние соответствует максимальному значению V. По генетическим программам F[] и FW[] элементы 5 и 6 вырабатывают зависимости от и его изменения управления Y(V) и плотности вероятности W (V, v ).

Значения случайных величин , складываясь в сумматоре 8 с генетическими значениями поступающими из блока памяти 4, образуют творческие знания В процессе этой работы совершенствуются, изменяясь так, чтобы получить максимум сопротивления V. Когда V достигает заданного порога или его приращения v становится меньше наперед заданного значения, адаптивная творческая работа ИС в данной среде заканчивается и элемент 6 вырабатывает W(x)0 по которому генератор случайного процесса 7 прекращает работу и в блок постоянной памяти 4 записываются из сумматора с оперативной памятью 8 полученные знания т.

После такого самообучения ИС приобретает новые знания, которые позволяют сократить или даже не производить творческую работу при повторном взаимодействии данного индивидуума ИС с такой же средой. По мере нестационарности среды творческая работа вновь необходима.

Описать работу ячейки можно выражением: которое соответствует наличию как ГИ, так и ТИ.

Здесь величина сопоставления соответственно для аналоговых или дискретных величин и В ячейках n1 отсутствуют рецепторы и эффекторы, а сопоставитель 2 заменяется на взвешенный сумматор 9, на выходе которого

Ячейки с =0 непосредственно взаимодействуют со средой, а ячейки с 1 осуществляют все более глубокое по мере увеличения обобщение знаний, которыми обладает и которые вырабатывает ИС.

При использовании ячеек n1 генетическое управление FW[] дополняется творческим

где k генетические весовые коэффициенты.

Система ТИ может быть очень разнообразной, определяя различные возможности ИС. Количество входов Vk, объединяемых на взвешенном сумматоре 9, и количество выходов, исходящих из сумматора 8, может быть различными, изменяясь от единицы до полного числа ячеек в системе.

Ячейка действует в одном измерении пространства знаний, а система во всем охватываемом ею пространстве знаний. Возможно также действие в одном измерении нескольких ячеек, работающих в разных масштабах дискретизации данного измерения. Совместная работа таких ячеек организуется ячейками более высокой иерархии.

Ячейка более высокой иерархии не только осуществляет адаптацию совместной работы ячеек более низких иерархий в области взаимной увязки вырабатываемых ими знаний, но и адаптацию самих алгоритмов работы этих ячеек, определяемую (5). Таким образом, в полном объеме ТИ осуществляется именно системой.

Структура и связи в системе генетические и определяются разработчиком системы (в биосистемах естественным отбором).

Знания, элементарные в ячейках 0 и все более обобщенные в ячейках n 1, распределены по системе. Поэтому система относительно устойчива к нарушениям работы отдельных ячеек и связей. Кроме того, ячейки более высоких иерархий одной системы могут передать выработанные ими и сформулированные на общем языке знания ячейкам другой системы, что ускоряет совместный творческий процесс обоих систем.

Все входящие в ИС ТИ элементы ординарны, их реализация не представляет особых трудностей: рецептор 1, входящий в систему ТИ, содержит последовательно соединенные преобразователь одного вида сигналов в другой, селектирующий фильтр (например, в частотной области), декодер или транскодер. В зависимости от назначения ИС и вида необходимых S и s порядок следования перечисленных блоков может меняться.

Эффектор 3 имеет обратную структуру и последовательность действий. Если s и v имеют одинаковое выражение (например, в двоичном коде), то R и S могут иметь различные выражения и даже физическую природу. Так в адаптивной по несущей частоте радиосистеме рецептор представляет собой приемник радиосигналов, включающий в себя селектор, усилитель радиосигналов, декодер, АЦП и транскодер в двоичный код, а эффектор устройство управления частотой передатчика, ЦАП, декодер из двоичного кода.

В системе управления роботом рецептор содержит, например, оптико-электрический преобразователь, АЦП, кодер в двоичный код, а эффектор - декодер, ЦАП, электромеханический преобразователь.

Сопоставитель 2 практически представляет собой коррелятор, производящий вычисления по формуле (3) соответственно в эвклидовой или хемминговой метрике. Он реализуется программно на ЭВМ или в виде отдельного устройства на жесткой логике, выполненного, например, на микросхемах 1802ВР3, 564ИМ3.

Генератор случайного процесса 7 с управляемой плотностью вероятности W (x, t) также реализуется программно на ЭВМ или на жесткой логике, например, x(t) реализуется на IBM PC, как описано в книге Л.Стенлона "Персональные ЭВМ IBM PC и XT. Программирование на языке ассемблера". М. Радио и связь, 1989г.

Устройство, вырабатывающее управляющую плотность вероятности 6, может быть реализовано программно или в жесткой логике, например, на микросхемах 537РУ8.16 посредством записанной в памяти таблицы соответствия одномерного столбца V и двумерного столбца W(X).

Устройство, управляющее выбором генетических знаний из постоянной памяти 5, может быть выполнено так же, как и устройство 6 с той разницей, что в память записывается таблица соответствия одномерного столбца V и также одномерного столбца Y адреса в постоянной памяти устройства 4.

Сумматор с оперативной памятью 8 и взвешенный сумматор 9 реализуются так же, как и сопоставитель 2.

Таким образом, изобретение представляет возможность работы в нестационарных или неполностью известных средах, которую ГИ не обеспечивает, а также возможность научных исследований и проектирования поведения сложных систем в сложных средах, где невозможно достаточно полное и точное моделирование. Использование ТИ позволяет перенести тяжесть исследования и проектирования с МС в целом не только ее генетическую часть. Творческая часть при этом будет адаптивно точно отображать среду и вырабатывать необходимое в ней поведение ИС.


Формула изобретения

Система для получения творческого искусственного интеллекта, содержащая ячейку искусственного интеллекта, состоящую из последовательно соединенных рецептора, сопоставителя, устройства управления выбором генетических знаний, блока постоянной памяти, а также эффектора, отличающаяся тем, что дополнительно введено ячеек искусственного интеллекта иерархий n = 0, 1, 2, ..., в каждую ячейку введены последовательно соединенные устройства, вырабатывающие управляющую плотность вероятности, вход которого объединен с устройством управления выбором генетических знаний, генератор случайного процесса изменений знаний, сумматор с оперативной памятью, соединенный двусторонней связью с блоком постоянной памяти, а третьим своим выходом соединен с вторым входом сопоставителя, в ячейках иерархии 1 введен взвешенный сумматор, выход которого соединен с объединенными входами устройства управления выбором генетических знаний и устройства, вырабатывающего управляющую плотность вероятности, входы взвешенного сумматора соединены с выходами сопоставителей ячеек более низкой или такой же иерархии, выходы сумматора с оперативной памятью в ячейках иерархии 1 соединены с входами устройств, вырабатывающих управляющую плотность вероятности ячеек более низкой или такой же иерархии, выходы сумматора с оперативной памятью в ячейках иерархии = 0 соединены соответственно с входами сопоставителя и эффектора.

РИСУНКИ

Рисунок 1, Рисунок 2

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 23.03.2010

Дата публикации: 20.08.2011




 

Похожие патенты:

Изобретение относится к вычислительной технике и может быть использовано для имитационного моделирования нейронных сетей любой требуемой архитектуры

Изобретение относится к оптоэлектронным моделирующим средствам, имеющим слоисто-пленочную распределенную структуру (сендвич-структуру), содержащую комбинацию оптоэлектронных блоков распределенной моделирующей среды, и предназначенную для моделирования процессов передачи информационно-энергетическких потоков в распределенных системах

Изобретение относится к бионике и вычислительной технике и может быть использовано в качестве элемента нейроноподобных сетей для моделирования биологических процессов, а также для построения параллельных нейрокомпьютерных и вычислительных систем для решения задач распознавания образов, обработки изображений, систем алгебраических уравнений, матричных и векторных операций
Изобретение относится к вычислительной технике и может быть использовано для моделирования нейронных сетей и для решения задач, относящихся к искусственному интеллекту

Изобретение относится к моделированию нейронных структур и может найти применение при разработке технических систем на основе нейронных адаптивных сетей для распознания образов и анализа и обработки изображений

Изобретение относится к бионике и вычислительной технике и может быть использовано в качестве элемента нейроподобных сетей при моделировании нейрофизиологических процессов в нервной системе, в устройствах обработки, анализа и распознавания образов, в системах управления интеллектуальными роботами, в цифровых нейрокомпьютерах

Изобретение относится к моделированию нейронных структур, осуществляющих анализ изображений в зрительных системах и может найти применение при разработке технических систем автоматического анализа изображений и систем технического зрения

Изобретение относится к вычислительной технике и биокибернетике и может быть использовано при исследовании процессов нервной системы методами моделирования, а также в специализированных процессорах

Изобретение относится к области бионики и вычислительной техники и может быть использовано при построении систем распознавания образов

Изобретение относится к области автоматики и может быть использовано для управления роботами, станками и др

Изобретение относится к оптоэлектронным нейроподобным модулям для нейросетевых вычислительных структур и предназначено для применения в качестве операционных элементов у нейрокомпьютерах

Изобретение относится к вычислительной технике и может быть использовано для воспроизведения искусственного интеллекта

Изобретение относится к области элементов автоматики и вычислительной техники, в частности к магнитным тонкопленочным элементам

Изобретение относится к программным вычислительным системам, основанным на коробах

Изобретение относится к нейроподобным вычислительным структурам и может быть использовано в качестве процессора вычислительных систем с высоким быстродействием

Изобретение относится к области моделирования функциональных аспектов человека

Изобретение относится к области бионики и биокибернетики и может быть использовано в модельных нейрофизиологических экспериментах, а также в устройствах и системах искусственного интеллекта и управления
Наверх