Способ сдвига синусоидального сигнала по фазе

 

Использование: в электротехнике для построения частотно-независимых элементов сдвига фазы устройств автоматизации энергосистем, предназначено для сдвига низкочастотного синусоидального сигнала по фазе. Сущность изобретения: способ основан на получении вспомогательного сигнала путем фазового сдвига исходного сигнала в произвольную сторону без изменения амплитуды, формирования первого и второго дополнительных сигналов соответственно как полусуммы и полуразности исходного и вспомогательного сигналов, одновременном измерении в дискретные моменты времени мгновенных значений дополнительных сигналов и получении путем аналого-цифрового преобразования последовательности цифровых отсчетов мгновенных значений первого и второго дополнительных сигналов, фиксации для двух моментов измерения цифровых отсчетов каждого из дополнительных сигналов, определении по ним цифровых отсчетов мгновенных значений выходного сигнала и формировании последовательности упомянутых цифровых отсчетов, получении путем цифро-аналогового преобразования последних сдвинутого выходного аналогового сигнала. 4 ил.

Изобретение относится к электротехнике, предназначено для сдвига низкочастотного синусоидального сигнала по фазе и может быть использовано в области автоматизации энергосистем для построения элементов сдвига фаз.

Известен способ сдвига синусоидального сигнала по фазе (патент Франции N 1558591, кл.H O3 H 11/18, 1968), при котором сдвинутый синусоидальный сигнал формируют как разность двух вспомогательных сигналов, полученных путем сдвигов по фазе исходного сигнала соответственно в сторону опережения и в сторону отставания при установленной частоте на угол, равный половине заданного угла фазового сдвига.

Указанный способ позволяет осуществить сдвиг синусоидального сигнала по фазе как при установленной частоте, так и при ее отклонении от этого значения, что является его достоинством. Основной недостаток известного способа состоит в том, что амплитуда сдвинутого по фазе сигнала зависит от частоты.

Наиболее близким к предлагаемому по сущности и достигаемому результату является способ сдвига синусоидального сигнала по фазе (а.с. SU N 5728966, кл. H O3 H 7/18, опубл. 15.09.77), при котором путем фазового сдвига исходного сигнала в произвольную сторону получают вспомогательный сигнал, без изменения амплитуды формируют первый и второй квадратурные сигналы из исходного и вспомогательного сигналов.

Данный способ также обеспечивает заданный сдвиг синусоидального сигнала по фазе при частотах, отличных от установленной. Кроме того, для реализации способа требуется только один вспомогательный сигнал, сдвинутый относительно исходного на произвольный угол, что является его достоинством. Недостатком этого способа, как и предыдущего, является изменение амплитуды вспомогательного сигнала при отклонении частоты от установленного значения.

Цель изобретения исключение зависимости амплитуды и фазы выходного сигнала от частоты.

На фиг. 1-3 поясняется сущность способа; на фиг. 4 представлена структурная схема аналого-цифрового устройства для реализации способа.

Способ сдвига синусоидального сигнала по фазе основан на получении вспомогательного сигнала путем фазового сдвига исходного сигнала в произвольную сторону без изменения амплитуды, формировании первого и второго дополнительных сигналов соответственно как полусуммы и полуразности исходного и вспомогательного сигналов, одновременном измерении в дискретные моменты времени мгновенных значений дополнительных сигналов и получении путем аналого-цифрового преобразования последовательности цифровых отсчетов мгновенных значений первого и второго дополнительных сигналов, фиксации для двух моментов измерения цифровых отсчетов каждого из дополнительных сигналов, определении по ним цифровых отсчетов мгновенных значений выходного сигнала согласно математическому выражению: где угол фазового сдвига; U1(n-1), U1(n) цифровые отсчеты мгновенных значений первого дополнительного сигнала для двух последовательных моментов измерения; U2(n-1), U2(n) цифровые отсчеты мгновенных значений второго дополнительного сигнала для двух последовательных моментов измерения; и формировании последовательности упомянутых цифровых отсчетов, получении путем цифроаналогового преобразования последних сдвинутого выходного аналогового сигнала.

Сущность способа сдвига синусоидального сигнала по фазе состоит в следующем.

Предположим, что исходный синусоидальный сигнал необходимо сдвинуть по фазе на угол сформировав в результате выходной сигнал При этом угол и амплитуда выходного сигнала не должны зависеть от частоты и кроме того, амплитуда выходного сигнала должна равняться амплитуде исходного сигнала.

Путем фазового сдвига исходного сигнала без изменения амплитуды в произвольную сторону, например в сторону отставания на угол получают вспомогательный сигнал (фиг.1) Угол выбирают в диапазоне при <0 и при >0. При угле a близком к 0 в первом случае и a близком к p во втором обеспечивается максимальное быстродействие формирования вспомогательного сигнала. Если модуль угла a равен p/2 то обеспечивается наиболее высокая точность получения дополнительных сигналов. Конкретное значение угла выбирают в зависимости от того, который из указанных критериев является определяющим.

Первый дополнительный сигнал и второй дополнительный сигнал формируют соответственно как полусумму и полуразность исходного и вспомогательного сигналов Поскольку амплитуды сигналов равны и не зависят от частоты, векторы дополнительных сигналов всегда совпадают с диагоналями ромба, образованного векторами в связи с чем угол между векторами составляет /2 и не зависит от угла между а следовательно, и от частоты исходного сигнала.

Для произвольного момента времени tn мгновенные значения дополнительных сигналов равны (фиг. 1,2)

где Um1, Um2 амплитуды соответственно первого и второго дополнительных сигналов;
угловая частота.

Мгновенные значения дополнительных сигналов для момента времени tn-1 определяются как

Поскольку цифровые отсчеты мгновенных значений первого и второго дополнительных сигналов являются непосредственно измеряемыми величинами, то из уравнений (4), (5) определяют амплитуды Um1, Um2 дополнительных сигналов

Из векторной диаграммы (фиг.1) следует, что амплитуда исходного сигнала равна

После подстановки Um1 и Um2 в (7) получают

Из векторной диаграммы (фиг.1) следует, что

После подстановки Um1 и Um2 в (9) получают

Подставив Um1, Um2, в (4), после несложных преобразований получают

Цифровые отсчеты мгновенных значений синусной us(n) и косинусной Uc(n) ортогональных составляющих исходного сигнала для момента времени tn равны

Подставив Um,sin wtn, cos wtn в (12), получают

Если известны для момента времени tn цифровые отсчеты мгновенных значений ортогональных составляющих исходного сигнала, то, как следует из векторной диаграммы (фиг. 3), цифровой отсчет мгновенного значения выходного сигнала при условии Um вых Um и угле сдвига равен
Uвых(n)= cosUs(n)+sinUc(n) (14)
После подстановки Us(n), Uc(n) в (14) получают выражение (1) для определения цифровых отсчетов мгновенных значений сдвинутого выходного сигнала,
Из полученной по выражению (1) для различных моментов времени последовательности цифровых отсчетов Uвых(n) (n 2,3.) путем цифро-аналогового преобразования формируют сдвинутый выходной аналоговый сигнал.

Предлагаемый способ обеспечивает формирование сдвинутого на заданный угол выходного сигнала, амплитуда которого равна амплитуде исходного сигнала. При этом угол фазового сдвига и амплитуда выходного сигнала не зависят от частоты исходного сигнала. Таким образом, устраняется основной недостаток прототипа исключается зависимость амплитуды сигнала от частоты.

Гибридное аналого-цифровое устройство для реализации предложенного способа (фиг. 4) содержит входной преобразователь 1, на вход которого подается исходный синусоидальный сигнал Uвх, фазовращатель 2, вход которого соединен с выходом преобразователя 1, сумматор 3 и вычитатель 4, первые входы которых подключены к выходу фазовращателя 2, а вторые к выходу преобразователя 1, цифровой процессор обработки аналоговых сигналов (ЦПОС) 5, аналоговый выход которого является выходом устройства, а первый и второй аналоговые входы подключены соответственно к выходам сумматора 3 и вычитателя 4.

Входной преобразователь 1 представляет собой промежуточный трансформатор и выполняет функцию гальванического разделения цепей исходного синусоидального сигнала и цепей устройства. Фазовращатель 2 представляет собой номинально-фазовое звено на операционном усилителе, коэффициент передачи которого не зависит от частоты (Овчаренко Н.И. Аналоговые и цифровые элементы автоматических устройств энергосистем. М.Энергоиздат, 1989, с. 180-185). Сумматор 3 и вычитатель 4 известные двухвходовые элементы, реализуемые с использованием операционных усилителей, абсолютное значение коэффициентов передачи которых равно 0,5. ЦПОС 5 известная перепрограммируемая микросхема К1813ВЕ1 цифровой обработки непрерывных сигналов в реальном масштабе времени, содержащая в одном кристалле аналоговые системы ввода и вывода информации с цифровым блоком обработки, системой постоянной и оперативной памяти (Хвощ С.Т. Варлинский Н.И. Попов Е.А. Микропроцессоры и микроЭВМ в системах автоматического управления/ Справочник под общ. ред. С.Т. Хвощ. Л. Машиностроение, 1987, с. 400-404).

Устройство работает следующим образом. Синусоидальный исходный сигнал Uвх поступает на вход преобразователя 1 и преобразуется в пропорциональный сигнал с той же амплитудой. Выходной сигнал преобразователя 1 подается на вход фазовращателя 2 и вторые входы сумматора 3 и вычитателя 4. На выходе фазовращателя 2 получается сигнал Uв такой же амплитуды, как и входной, но сдвинутый по отношению к нему в сторону отставания на угол a который поступает на первые входы сумматора 3 и вычитателя 4. На выходах сумматора 3 и вычитателя 4 формируются сигналы U1 и U2, равные соответственно полусумме и полуразности мгновенных значений исходного сигнала Uвх и выходного сигнала фазовращателя Uв. Выходной сигнал сумматора U1 подводится к первому аналоговому входу ЦПОС 5, на второй аналоговый вход которого подается выходной сигнал вычитателя U2.

Полученные дополнительные сигналы U1 и U2, поступающие на аналоговые входы ЦПОС 5, подвергаются цифровой обработке в реальном масштабе времени. Циклически с интервалом дискретизации, задаваемым временной задержкой, получают цифровые отсчеты мгновенных значений первого и второго дополнительных сигналов, по которым определяют цифровые отсчеты мгновенных значений выходного сигнала и формируют сдвинутый аналоговый сигнал.

При этом в начале каждого цикла посредством аналоговой системы ввода информации ЦПОС 5 измеряют мгновенные значения дополнительных сигналов и путем аналого-цифрового преобразования получают их цифровые отсчеты U1(n), U2(n), которые записывают в соответствующие ячейки памяти. По цифровым отсчетам U1(n-1), U2(n-1), дополнительных сигналов, содержащихся в ячейках памяти ЦПОС 5, которые получены в начале предыдущего цикла, и отсчетам U1(n), U2(n), полученным в начале текущего цикла, хранящимся также в ячейках памяти ЦПОС 5, в соответствии с выражением (1) определяют цифровые отсчеты мгновенных значений сдвинутого сигнала Uвых(n) и записывают их в ячейки памяти ЦПОС 5. Посредством системы вывода информации ЦПОС 5 путем цифроаналогового преобразования формируют аналоговую величину выходного сигнала. Затем цифровым отсчетом U1(n-1), U2(n-1) предыдущего цикла соответственно присваивают значения отсчетов U1(n), U2(n) текущего цикла и после создания временной задержки переходят к выполнению очередного цикла.

Способ может быть использован для построения частотонезависимых элементов сдвига фазы устройств автоматизации энергосистем.


Формула изобретения

Способ сдвига синусоидального сигнала по фазе, при котором путем фазового сдвига исходного сигнала в произвольную сторону получают вспомогательный сигнал без изменения амплитуды, формируют первый и второй дополнительные сигналы, отличающийся тем, что первый и второй дополнительные сигналы получают соответственно как полусумму и полуразность исходного и вспомогательного сигналов, одновременно измеряют в дискретные моменты времени мгновенные значения дополнительных сигналов и путем аналого-цифрового преобразования получают последовательность цифровых отсчетов мгновенных значений первого и второго дополнительных сигналов, фиксируют для двух моментов измерения цифровые отсчеты каждого из дополнительных сигналов и определяют цифровые отсчеты мгновенных значений выходного сигнала согласно выражению

где - угол фазового сдвига;
n 2, 3,
U1(n-1), U1(n) цифровые отсчеты мгновенных значений первого дополнительного сигнала для двух последовательных моментов измерения;
U2(n-1), U2(n) цифровые отсчеты мгновенных значений второго дополнительного сигнала для двух последовательных моментов измерения,
формируют последовательность этих цифровых отсчетов, из которой путем цифроаналогового преобразования получают сдвинутый по фазе выходной сигнал.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к импульсной технике и радиотехнике и может быть использовано в системах автоматики

Изобретение относится к радиотехнике, в частности к устройством для программного цифрового управления фазовым сдвигом синусоидального напряжения высокой частоты в автоматизированных системах стабилизации опорных генераторов, и может быть использовано в автоматических информационно-измерительных системах, а также в фазокогерентных системах связи

Изобретение относится к автоматике и вычислительной технике и может быть использовано для связи аналоговых источников информации с цифровым вычислительным устройством

Изобретение относится к радиотехнике

Изобретение относится к области радиотехники и связи и м.б

Изобретение относится к области радиотехники и может быть ислользовано в системах фазового напряжения

Изобретение относится к радиотехнике Цель изобретения - повьшение точности формирования фазового сдвига выходных сигналов

Изобретение относится к импульсной технике и может быть использовано в радиоизмерительных устройствах

Изобретение относится к области электротехники

Изобретение относится к области радиотехники и может быть использовано в реализации линий задержки, фазовращателей и фазовых корректирующих устройствах с высокими показателями качества

Изобретение относится к области электротехники (ФПУ). Технический результат - повышение надежности. ФПУ управляют путем поэтапной коммутации тиристорными мостами обмоток его шунтового трансформатора. Для этого измеряют токи тиристорных мостов и напряжения на коммутируемых ими обмотках. По измеренным в исходном состоянии ФПУ значениям тока и напряжения для каждого тиристорного моста фиксируют интервалы первого вида, начинающиеся со смены полярности напряжения и заканчивающиеся сменой направления тока, и интервалы второго вида, начинающиеся со смены направления тока и заканчивающиеся сменой полярности напряжения. Укорачивают интервалы второго вида в начале интервала - на величину, превышающую время восстановления управляющих свойств тиристора, а в конце интервала - на величину, превышающую сумму времени восстановления управляющих свойств тиристора и времени коммутации тока обмотки шунтового трансформатора. Сравнивают длительность укороченных интервалов с длительностью импульса включения тиристора. Формируют последовательность разрешенных интервалов из интервалов первого вида и укороченных интервалов второго вида, длительность которых превышает длительность импульса включения тиристора. Выбирают допустимую последовательность поэтапной коммутации обмоток, удовлетворяющую заданным ограничениям, в соответствии с которой выполняют коммутацию обмоток на разрешенных интервалах. 3 з.п. ф-лы, 4 ил.

Широкополосный фазовращатель на π/2 относится к области радиотехники. Достигаемый технический результат - обеспечение постоянного фазового сдвига опорного напряжения в широкой полосе промежуточных частот и повышение широкополостности. Фазовращатель содержит два идентичных отрезка коаксиальной линии 2, 4, резистор 3, цепочку из параллельно соединенных конденсатора 5 и резистора 6, источник опорного напряжения 7, конденсатор 1 . 5 ил.

Изобретение относится к области электротехники и может использоваться в энергетических системах. Технический результат - обеспечение регулирования потоков мощности на обмотках шунтового трансформатора энергосистемы за счет обеспечения полной управляемости фазоповоротным устройством (ФПУ) вне зависимости от режима работы энергосистемы. Управление ФПУ осуществляют путем поэтапного переключения тиристорным коммутатором обмоток шунтового трансформатора, для чего задают конечное состояние тиристорного коммутатора, вводят ограничения на поэтапное переключение тиристорного коммутатора из текущего состояния в заданное конечное, выбирают допустимую последовательность поэтапного переключения, удовлетворяющую заданным ограничениям, измеряют токи тиристорного коммутатора, в соответствии с выбранной последовательностью осуществляют последовательное переключение фаз тиристорного коммутатора в заданное конечное состояние. 3 ил.

Изобретение относится к области электротехники и электроэнергетики, и в частности к управлению фазоповоротными устройствами (ФПУ). Техническим результатом, на получение которого направлено предлагаемое техническое решение, является повышение быстродействия, точности управления ФПУ и надежности работы энергосистемы за счет коррекции маршрутов переключения на основе актуальной информации о параметрах режима энергосистемы при управлении ФПУ. Технический результат достигается тем, что в способе управления фазоповоротным устройством путем поэтапного изменения его состояния, использующем задание его конечного состояния, выбор допустимой последовательности поэтапного переключения, удовлетворяющей заданным ограничениям на величину выходного напряжения, измерение токов фазоповоротного устройства, реализацию заданной последовательности управления тиристорным коммутатором фазоповоротного устройства, измеряют напряжения на фазоповоротном устройстве и по измеренным токам и напряжениям фазоповоротного устройства вычисляют эквивалентные параметры линии электропередачи относительно узлов, к которым подключено фазоповоротное устройство, для дополнительной адаптации в реальном времени маршрутов переключения и управления последовательностью переключения фазоповоротного устройства. 1 ил.
Наверх