Способ эксплуатации термоэмиссионного преобразователя с микрозазором

 

Назначения: изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую. Сущность изобретения: давление пара цезия в межэлектродном зазоре устанавливают равным равновесной температуре Tr[K], определяемой соотношением Tr < (3740/(6,78 - lg(610-3/L), где L - величина межэлектродного зазора, мм, а рабочая температура эмиттера Te[K] выбрана по выражению Te = (Tr 20 К)(0,71 Фo - 1,15), где Фo - вакуумная работа выхода материала эмиттера, В. 1 ил.

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании энергоустановок с относительно низкими рабочими температурами эмиттера и расположенными вне активной зоны ядерного реактора, в солнечных энергоустановках и нагреваемых за счет сгорания органического топлива.

Термоэмиссионный преобразователь (ТЭП) с микрозазором содержит плоские электроды в виде нагреваемого эмиттера и охлаждаемого коллектора, систему дистанционирования из керамического электроизолятора, токовыводы от эмиттера и коллектора, причем один или оба электрода электроизолированы от корпуса, в котором размещена эмиттерно -коллекторная сборка. В таком ТЭП реализуются межэлектродные зазоры (МЭЗ) менее 0,05 мм и получены плотности мощности более 1 Вт/см2 при температуре эмиттера Tэ менее 1450 K.

Известен способ эксплуатации ТЭП в дуговом режиме работы, при котором в МЭЗ создают условия для возникновения низковольтного дугового разряда [1] Для этого в МЭЗ подают пар цезия при давлении 0,5 10 мм рт.ст. При нагреве эмиттера ТЭП электроны, ускоренные на скачке потенциала у эмиттера термализуются, разогреваясь при этом до температуры 2800 3200 K. При столкновении этих электронов с атомами цезия в процессе термической ступенчатой ионизации образуются ионы и в МЭЗ возникает плазма, обеспечивающая прохождение тока от нагреваемого эмиттера к охлаждаемому коллектору. Такой ТЭП может работать при Te 1500 2100 K и в зависимости от Te, величины МЭЗ и других факторов и обеспечивает генерирование плотности электрической мощности 2 15 Вт/см2 и выше. Такие ТЭП применялись в космических ядерно -энергетических установках (ЯЭУ) типа "Топаз".

Однако при эксплуатации ТЭП в дуговом режиме реализуются относительно низкие КПД (7 15%). Это связано с тем, что процесс термической ионизации требует разогрева всех эмиттированных электронов, что приводит к значительным потерям, в сотни раз превышающим необходимые для ионообразования энергетические затраты.

Наиболее близким к изобретению по технической сущности является способ эксплуатации ТЭП в кнудсеновском режиме работы преобразователя, описанный в [2] Для работы в таком режиме создаются условия, при которых средняя длина свободного пробега электронов 1 заметно превышает величину МЭЗ L, а генерация ионов происходит на поверхности эмиттера и практически не требует затрат энергии на ионообразование и на прохождение тока через МЭЗ. В таком режиме плотность проходящего тока j может быть близка к плотности тока эмиссии с эмиттера jR, барьерный индекс B к работе выхода коллектора, Фc, а генерируемое напряжение к контактной разности потенциалов электродов Фe Фc, где Фe работа выхода эмиттера.

В принципе в таком режиме эксплуатации возможно получение высокого КПД, близкого к КПД идеального ТЭП. Однако для эффективности поверхностной ионизации требуется Фe примерно 3 эВ, при которой для получения jR 5 15 А/см2 необходимо иметь Te, равную примерно 2000 К. Другое ограничение связано с требованием, чтобы длина свободного пробега электрона l заметно превышала L. Вследствие этого для типичных МЭЗ в 0,5 мм столкновения с атомами цезия ограничивают давление пара цезия PCs величиной 510-2 мм рт.ст. а кулоновское рассеяние электронов ионами цезия ограничивает возможную величину плотности тока. Поскольку вакуумная работа выхода металлов лежит в интервале 4 5,5 эВ, кнудсеновский режим эксплуатации ТЭП с цезиевым наполнением может быть осуществлен при условиях 2,3 <T/Tr <3,8 (1) Te/Tr > 6,5 (2) Нетрудно оценить, что при PCs 10-2 мм рт.ст. (Tr 425 K) при Te/Tr > 3,8 плотность тока эмиссии не превышает 10-1 А/см2, а при Te/Tr > 6,5 температура эмиттера более 2600 К. Поэтому ТЭП в кнудсеновском режиме работы при заполнении МЭЗ лишь паром цезия всегда работает в неоптимальном перекомпенсированном режиме, при котором Фe велика, а плотность тока и КПД низки. Для уменьшения работы выхода эмиттера МЭЗ может быть заполнен смесью паров цезия и бария. Однако барий, адсорбируясь на коллекторе, повышает его работу выхода до 2,2 эВ, что приводит к снижению на 0,5 0,6 В по сравнению с цезиевым режимом работы внешнюю контактную разность потенциалов Фec и соответственно рабочее напряжение ТЭП. В результате КПД в таком режиме ниже, чем в чисто цезиевом режиме работы. Реально преимущества работы ТЭП в кнудсеновском режиме начинают проявляться при Te выше 2300 К, что не позволяет использовать его в практике из-за отсутствия высокотемпературных источников тепла и материалов, сохраняющих длительную работоспособность при таких температурах.

Техническим результатом, достигаемым при использовании изобретения, является обеспечение возможности эксплуатации ТЭП в кнудсеновском режиме с высокими значениями плотности электрической мощности и КПД и приемлемой для практики температурой эмиттера.

Указанный технический результат достигается в способе эксплуатации ТЭП с микрозазором (10 30 мкм), включающем нагрев эмиттера и охлаждение коллектора и подачу пара цезия в МЭЗ, в котором давление пара цезия в МЭЗ должно соответствовать давлению насыщенного пара при температуре Tr, определяемой соотношением.

Tr <3740 / [6,78 lg (610-3/l)] (3) а рабочая температура эмиттера Te выбрана из соотношения Te (Tr20) (0,71Фc 1,15) (4) где Te и Tr в K, а Фo вакуумная работа выхода материала эмиттера.

На чертеже представлены так называемые кривые Рейвора, определяющие значения работы выхода поверхностей металлов в паре цезия в зависимости от их вакуумной работы выхода Фo и отношения температуры поверхности T (в нашем случае Te) к температуре цезиевого резервуара Tr. Пунктирная линия на этом рисунке соответствует условию a 1, когда достигается максимальная мощность кнудсеновского режима работы ТЭП. Здесь a - параметр компенсации объемного заряда, который в кнудсеновском режиме определяется соотношением a (Ji/Je)(M/m) (5) где Ji плотность ионного тока, идущего с эмиттера, Je - плотность тока электронной эмиссии, M/m отношение масс ионов (цезия) и электронов.

Выше пунктирной линии повышается ионная составляющая полного тока, ниже линии электронная составляющая.

Система кривых Рейвора при различных возможных значениях Фo тугоплавких металлов имеет участок, где линия a=1 пересекает их при условиях, которые соответствуют всем требованиям, позволяющим осуществить цезиевый кнудсеновский режим работы ТЭП с плотностью тока эмиссии 5 15 А/см2 при относительно невысоких температурах эмиттера в 1700 2100oK с использованием реально существующих тугоплавких эмиттерных материалов, имеющих вакуумную работу выхода 4,0 5,5 эВ.

Формула (3) получена из анализа кривых Рейвора (фиг.1) и погрешностью 20 K определяет конкретную температуру цезиевого резервуара Tr, при которой при заданных Фo и Te выполняется условие a=1. Оценочная погрешность определяется погрешностью самих кривых Рейвора, а также оценочным характером проведенных расчетов. Отметим также, что при больше 1 в кнудсеновском режиме возникают колебания тока и для устойчивости необходимо работать в слегка недокомпенсированном режиме с a=1.

Формула (4) выражает требование к температуре Tr, обеспечивающей выполнение условий работы ТЭП в кнудсеновском режиме, когда l должна быть больше L. Длина свободного пробега электронов при их столкновениях с атомами определяется выражением, см: L (610-3)PCs. (6)
Влияние кулоновских столкновений при плотностях тока меньших 20 А/см2 и L порядка нескольких десятков микрон незначительно и может не приниматься во внимание. Давление пара цезия в зависимости от Tr описывается приближенной формулой [3]
lg PCs 6,78 3740/Tr (7)
Подставляя выражения (6) и (7) в условие выполнения кнудсеновского режима работы (l немного больше L) получим формулу (4).

Эксплуатация ТЭП с микрозазором осуществляется следующим образом.

Зная Фo выбранного эмиттерного материала по (3) определяют необходимую температуру цезиевого резервуара, а затем по (4) и требуемую рабочую температуру эмиттера Te. Повышая Te и Tr до требуемых значений осуществляют эксплуатацию ТЭП с микрозазором в оптимальном кнудсеновском режиме.

Эффективность предложенного технического решения была проверена расчетным путем.

Получены расчетные значения плотности кнудсеновского режима работы ТЭП с микрозазором в 10 30 мкм, удовлетворяющим указанным выше требованиям при различных температурах эмиттера. Работа выхода коллектора принималась равной 1,55 эВ, работа выхода эмиттера рассчитывалась по кривым Рейвора, а уменьшение плотности тока вследствие редких столкновений рассчитывалось по формуле
J Jr [1 + 3L/(8l)] (8)
При температуре эмиттера в 1800 2000 К получены плотности мощности в 5 15 Вт/см2 при КПД более 20%
Такой ТЭП может быть использован в качестве основы ядерных энергоустановок с расположенным вне активной зоны преобразователем блоком, солнечных энергоустановок с концентратором солнечной энергии и в энергоустановках, нагреваемых сгоранием органического топлива.


Формула изобретения

Способ эксплуатации термоэмиссионного преобразователя с микрозазором, включающий нагрев эмиттера, охлаждение коллектора и подачу пара цезия в межэлектродный зазор, отличающийся тем, что давление пара цезия в межэлектродном зазоре устанавливают равным давлению насыщенного пара при температуре Tr [K]
Tr < 3740/[6,78 lg(610-3/L)]
где L величина межэлектродного зазора, мм,
а рабочая температура эмиттера Te [K] выбрана из соотношения
Te = (Tr 20 K)(0,71 Фo - 1,15),
где Фo вакуумная работа выхода материала эмиттера, эВ.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании энергоустановок с термоэмиссионным реактором преобразователем (ТРП) с расположенными внутри активной зоны термоэмиссионными электрогенерирующими сборками (ЭГС)
Изобретение относится к способам управления ядерными реакторами, в частности, к управлению термоэмиссионным реактором-преобразователем (РП), используемым в качестве источников электрической энергии в ядерных энергетических установках (ЯЭУ) космических аппаратов (КА)

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии в электрическую и может быть использовано при создании источников и генераторов пара цезия для термоэмиссионных преобразователей, преимущественно для реакторных испытательных устройств термоэмиссионных сборок

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии в электрическую и может быть использовано при проведении реакторных испытаний термоэмиссионных электрогенерирующих сборок (ЭГС)

Изобретение относится к области прямого преобразования тепловой энергии в электрическую, а более конкретно к конструкции электрогенерирующих сборок термоэмиссионного реактора преобразователя
Изобретение относится к термоэмиссионному методу преобразования тепловой энергии и реакторной теплофизике и может быть использовано в программе реакторных испытаний термоэмиссионных электрогенерирующих сборок (ЭГС)

Изобретение относится к атомной энергетике и космической технике и может быть использовано при создании преимущественно космических энергоустановок

Изобретение относится к энергетике и атомной технике и может быть использовано при создании источников электроэнергии с ограниченными возможностями сбора тепла в окружающее пространство

Изобретение относится к области электроэнергетики, к ядерной космической энергетике

Изобретение относится к области прямого преобразования тепловой энергии в электрическую, а более конкретно, к конструкции электрогенерирующего канала (ЭГК) термоэмиссионного реактора-преобразователя

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании энергоустановок с термоэмиссионным реактором-преобразователем (ТРП) с расположенными внутри активной зоны термоэмиссионными электрогенерирующими сборками (ЭГС)

Изобретение относится к области газоразрядной техники, более конкретно к плазменным вентилям

Изобретение относится к электротехнике и электроэнергетике и может найти применение в сильноточных низковольтных выпрямителях переменного тока

Изобретение относится к технике преобразования тепловой энергии в электрическую, а более конкретно - к прямому преобразованию тепла термоэмиссионным способом, и предназначено для использования в качестве источников электрической энергии в наземных и космических установках

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании энергоустановок с термоэмиссионным реактором-преобразователем с расположенными внутри активной зоны термоэмиссионными электрогенерирующими сборками (ЭГС)

Изобретение относится к термоэмиссионному методу преобразования тепловой энергии непосредственно в электрическую и может быть использовано при создании термоэмиссионного реактора-преобразователя с расположенными внутри активной зоны термоэмиссионными электрогенерирующими сборками (ЭГС)

Изобретение относится к ядерной энергетике, в частности к космическим ядерным энергетическим установкам
Наверх