Способ дегазации выработанных пространств шахтных полей

 

Изобретение предназначено для борьбы с газом, газодинамическими явлениями, а также для улучшения технико-экономических показателей работы шахты. Сущность способа дегазации выработанного пространства шахтных полей следующая: по газоносному пласту проходят оконтуривающие столб выработки, принимают расстояния между вертикальными скважинами, бурят скважину до пересечения с пластом, производят инклинометрическую съемку скважины, обсаживают ее перфорированными трубами, герметизируют, утепляют скважину, подвигают забой, подключают ее к устройству отсоса газа с возможностью изменения вакуума, дополнительно размечают вдоль длины оконтуривающих выработок геофизические пикеты, измеряют методом радиоволнового зондирования степень нарушенности массива, определяют наличие и количество зон естественной повышенной трещиноватости в пределах столба и при наличии их замеряют протяженность столба, ширину зон, расстояния до выработок, замеряют углы ориентации зон с помощью радиоволнового зондирования в пространстве, наносят полученную информацию на план горных работ, располагают последующую ближайшую скважину в зоне повышенной трещиноватости, производят дегазацию выработанного пространства, замеряют газообильность выработок, определяют относительный коэффициент эффективности дегазации и путем изменения вакуума и расстояний между скважинами поддерживают его на требуемом уровне для создания безопасных условий ведения горных работ. 2 ил., 2 табл.

Изобретение относится к горной промышленности и может быть использовано для борьбы с газом и газодинамическими явлениями в шахтах.

Известен способ дегазации сближенных угольных пластов и выработанного пространства, включающий бурение скважины с поверхности до разрабатываемого пласта, обсадку ее трубами, тампонаж затрубного пространства, перфорацию нижней части обсадной колонны и тампонажного кольца и отсос газа, после бурения и образования зоны подработки над разрабатываемым пластом на границе зоны образования трещин от подработки производят камуфлетное взрывание, а длину перфорированной части скважины через которую производят отсос газа после ее подработки разрабатываемым пластом, увеличивают в 1,5 раза по сравнению с высотой зоны подработки без применения взрывания [1] Недостатком этого способа является то, что вследствие незначительного увеличения длины участка скважины, на протяжении которого производится искусственное образование сети трещин взрыванием или гидроразрывом не учитывается: наличие зон естественной трещиноватости в массиве, имеющих повышенную газоотдачу, производительность скважин, их число по длине выемочного столба и безопасность работ.

Известен также способ дегазации выработанных пространств и сближенных угольных пластов, включающий бурение первой вертикальной скважины с поверхности до разрабатываемого пласта на расстоянии свыше 30 м впереди забоя, бурение последующих от нее скважин на расстоянии, равном двум-трем шагам посадки основной кровли и от вентиляционного штрека на расстоянии 10-70 м, инклонометрическую съемку скважины, обсадку ее колонной перфорированных труб, герметизацию скважины от поверхности и отсос газа с принятым априори коэффициентом эффективности дегазации [2] (прототип).

Недостатком этого способа является то, что вследствие незначительной сети трещин в прискважинной зоне постоянного расстояния между скважинами, принимаемого без учета зон естественной повышенной трещиноватости, значительно сокращается производительность скважин, не учитывается расстояние между скважинами по длине выемочного столба и безопасность работ.

Цель изобретения увеличение производительности дегазационных скважин и оптимизация их числа за счет бурения скважин в установленные зоны повышенной трещиноватости (ЗПТ) и газоотдачи массива.

Цель изобретения повышение безопасности труда горняков в шахтах и улучшение технико-экономических показателей работы шахты за счет повышения производительности скважин, извлекающих метан для промышленного использования.

Указанные недостатки известных способов устраняются тем, что в шахтном поле по газоносному пласту угля проходят оконтуривающие выемочный столб выработки, принимают расстояние от разрезной печи до первой скважины равным 30-40 м, расстояние между последующими скважинами принимают равным двум-трем шагам посадки основной кровли с учетом конкретных условий, бурят скважину, чтобы она пересекала разрабатываемый пласт и углублялась на 3-5 м в породы почвы, производят инклинометрическую объемку перед обсадкой скважины; обсаживают скважину колонной стальных перфорированных труб диаметром не менее 10 мм, не опуская ее ниже 3-5 м над кровлей пласта; герметизируют скважину от поверхности на расстоянии не менее 10 м, утепляют устье скважины и подвигают забой, дополнительно размечают вдоль всей длины оконтуривающих выработок геофизические пикеты с шагом, обеспечивающим необходимую глубину контроля трещиноватости массива, измеряют методом радиоволнового зондирования (РВЗ) степень нарушенности массива, определяют ориентацию преобладающей системы трещиноватости, наличие, количество зон повышенной трещиноватости (ЗПТ) в пределах столба и при наличии ЗПТ замеряют протяженность выемочного столба, ширину ЗПТ в пределах столба, расстояние между ними и до выработок, определяют углы ориентации ЗПТ с помощью РВЗ в плоскости пласта и в вертикальной плоскости, наносят полученную информацию на план горных работ; располагают последующую ближайшую скважину так, чтобы она находилась в начале ЗПТ от монтажной камеры, подключают скважину к устройству отсоса газа с возможностью изменения вакуума и производят дегазацию выработанного пространства, отмечают расстояние начала замера газообильности, равное шагу обрушения пород кровли до скважины пробуренной в ЗПТ, и последнее, замеряют газообильность выработок, примыкающих к выработанному пространству, фактическую без дегазации, с дегазацией, допустимую газообильность выработок, примыкающих к выработанному пространству, по фактору вентиляции без дегазации, сравнивают значения фактической и допустимой газообильности, определяют относительную величину метанообильности, которая может быть удалена дегазацией к метанообильности, которую необходимо удалить, и добиваться выполнения условий, обеспечивающих требуемый относительный коэффициент эффективности дегазации выработанного пространства для создания безопасных условий ведения горных работ.

На фиг. 1 приведена схема дегазации выработанного пространства шахтного поля; на фиг.2 разрез А-А на фиг.1.

На шахтном поле 1, по разрабатываемому пласту проходят оконтуривающие выемочный столб 2 выработки: конвейерный 3, вентиляционный 4 штреки и монтажную камеру 5, размечают вдоль всей длины 6 выемочного столба и монтажной камеры геофизические пакеты 7 с шагом 8, обеспечивающим необходимую глубину контроля трещиноватости массива 9, измеряют методом радиоволнового зондирования горных пород степень нарушенности массива, определяют ориентацию преобладающей системы трещиноватости, наличие и количество зон повышенной трещиноватости (ЗПТ) 10 массива в пределах столба, и при наличии ЗПТ замеряют протяженность выемочного столба, ширину 11 ЗПТ в пределах столба; определяют углы ориентации ЗПТ с помощью РВЗ в плоскости пласта 12 и в вертикальной плоскости 13; наносят полученную информацию на план горных работ, принимают расстояние 13 от первой скважины 15 до монтажной камеры равным шагу посадки основной кровли (30-40 м), а расстояние 16 между последующими скважинами до ближайшей 17 к началу ЗПТ и очередной скважины 18 после нее принимают равным двум-трем шагам посадки основной кровли с учетом конкретных условий, располагают последующую ближайшую скважину так, чтобы она находилась в начале ЗПТ от монтажной камеры, бурят с поверхности скважину первую и последующую в ЗПТ, чтобы они пересекали разрабатываемый пласт и углублялись в породы почвы на 3-4 м, производят инклинометрическую съемку перед их обсадкой; обсаживают каждую скважину колонной стальных перфорированных труб диаметром не менее 100 мм, чтобы нижний конец колонны располагался не ниже 3-5 м над кровлей пласта, герметизируют скважину от поверхности на расстоянии не менее 10 м, утепляют устье скважины, подвигают забой 19, подключают скважину к устройству отсоса 20 газа с возможностью изменения вакуума и производят дегазацию выработанного 21 пространства, отмечают расстояние начала замера газообильности, равное шагу обрушения пород 22 кровли до скважины пробуренной в ЗПТ и после нее 23, замеряют газообильность выработок, примыкающих к выработанному пространству фактическую Iф без дегазации и с дегазацией Iдег, допустимую газообильность выработок, примыкающих к выработанному пространству, по фактору вентиляции без дегазации Iдоп, сравнивают значения Iф, Iдоп и определяют относительную величину метанообильности, которая может быть удалена дегазацией Iдег к метанообильности I, которую необходимо удалить (относительный коэффициент эффективности дегазации).

В случае Iдег < I добиваются выполнения условия Iдег > I путем увеличения вакуума для данной скважины и уменьшения расстояний между последующими скважинами, пробуренными в ЭПТ 24.

В случае Iдег > I добиваются выполнения условия Iдег I путем уменьшения вакуума для данной скважины и увеличения 25 расстояний между последующими скважинами, пробуренными в ЭПТ, для получения требуемого относительного коэффициента эффективности дегазации и создания безопасности ведения горных работ.

Таким образом, существенными отличительными признаками предлагаемого способа являются: определение зон повышенной трещиноватости и газоотдачи массива, увеличение производительности дегазационных скважин и оптимизация их числа в пределах шахтного поля.

Докажем существенность первого отличительного признака.

Опыт работы шахт показывает, что шахтные поля имеют естественные нарушения (ЗПТ), которые обладают повышенной трещиноватостью и газоотдачей, однако в известных способах это не учитывается.

Разработанная аппаратура и методика позволяют с помощью метода РВЗ горного массива определять в ней ЗПТ. Для проверки количественных значений изменения производительности скважин была пробурена одна скважина вне ЗПТ массива, а вторая и третья в ЗПТ массиве. Произведенные замеры производительности скважин до их подработки и попадания в выработанное пространство приведены в табл.1.

Из табл. 1 видно, что производительность скважин, пробуренных в ЗПТ при естественном истечении из них газа, выше в 1,2-1,4 газа, чем производительность скважин, пробуренных вне ЗПТ, что подтверждено актом промышленных испытаний предложенного способа (см. приложение). Таким образом можно считать доказанным первый существенный отличительный признак.

Для доказательства второго отличительного признака, свидетельствующего о повышении производительности скважин, пробуренных в ЗПТ выработанного пространства, произведены замеры по тем же скважинам, но после их подработки забоем (табл.2).

Из табл.2 видно, что производительность скважин, дегазирующих выработанное пространство, зависит от ЗПТ, которые изменяют приток в него газа. По сравнению со скважиной N 18911, которая находилась за пределом 2-й ЗПТ и давала 2,5 м3/мин, средняя производительность скважин, дегазирующих выработанное пространство с ЗПТ (скважины 18912, 18913), была выше в 2,2-3,2 раза, а максимальные значения выше в 3-4 раза, что подтверждено актом промышленных испытаний (см. приложение).

Таким образом доказана достоверность и второго существенного отличительного признака у предлагаемого способа, который позволяет оптимизировать число скважин по длине выемочного столба, а с учетом этого изменять их число и производительность для получения требуемого относительного коэффициента эффективности дегазации выработанного пространства.

Достоверность третьего существенного отличительного признака предлагаемого способа дегазации выработанных пространств, заключающегося в оптимизации числа скважин, и подтверждается замером газообильности выработок, примыкающих к выработанному пространству. Замеры показали, что при подработке скважин с ЗПТ массива газообильность выработок возрастала пропорционально производительности скважин, пробуренных в выработанное пространство. Регулировка вакуума и изменение расстояния между скважинами позволила поддерживать газообильность выработок не выше допустимого предела (см. пример 2 конкретного исполнения способа).

Достоинством предложенного способа является простота и экономичность в реализации за счет не сложного процесса выявления естественных ЗПТ, исключающего необходимость применения дорогостоящих и сложных в реализации способа и искусственного образования ЗПТ в известных способах, требующих применения взрывания зарядов в скважинах и гидроразрыва массива.

Преимуществом предлагаемого изобретения является повышение производительности дегазационных скважин за счет бурения их в ЗПТ, предварительно определяемые с помощью методов РВЗ массива для получения и использования метана в народном хозяйстве.

Кроме того, предложенный способ позволяет предотвращать возникновение газодинамических явлений, которые происходят зачастую при подходе забоя к ЗПТ. За счет предварительной дегазации ЗПТ удается дегазировать эти зоны, которые обладают повышенной газоотдачей, и создать более безопасные условия при ведении горных работ в шахтах.

Пример 1. В качестве объекта исполнения был выбран выемочный столб лавы N 819 в шахты поле пл. Полысаевского-2, ш. "Кузнецкая" АСП "Ленинскуголь" Кузбасса.

По пласту пройдены оконтуривающие выработки: конвейерный, вентиляционный штреки и монтажная камера, размечены геофизические пикеты по всей длине оконтуривающих выработок с шагом 10 м, измерена методом РВЗ ориентация преобладающей трещиноватости и наличие четырех ЗПТ в выемочном столбе, замерена протяженность выемочного столба по простиранию 611 м, по падению - 178 м, ширина каждой ЗПТ в направлении от монтажной камеры соответственно 40, 36, 62 и 20 м, замерены расстояния между каждой ЗПТ соответственно 100, 40, 38 м от монтажной камеры до начала первой ЗПТ -198 м, от конца последней ЗПТ до конца выемочного столба 200 м, определены углы ориентации каждой ЗПТ с помощью РВЗ и горного компаса в направлении от конвейерного штрека в плоскости пласта, равные соответственно 80, 80, 80, 80o; принято расстояние 30 м от монтажной камеры до первой в выемочном столбе скважины, пробурены четыре скважины до пересечения пласта: N 18912 -до начала 2-й ЗПТ, N 18913 во 2-ю ЗПТ (в 44 м от ее начала), N 18914 в 3-ю ЗПТ (в 17 м от ее начала в локальную приконтурную зону с повышенной трещиноватостью), после окончания бурения скважин перед обсадкой произведена их инклинометрическая съемка, скважины обсажены колоннами перфорированных труб диаметром 100 мм, произведена герметизация скважины от поверхности на расстоянии 10 м и утепление устьев скважин, замерена с помощью расходомера производительность скважин при естественном истечении газа на поверхность, и результаты замеров сведены в табл. 1.

Пример 2. По тому же объекту наблюдения: по плату пройдены оконтуривающие выработки, повторены последующие операции, подвинут забой лавы, подключены скважины к устройству отсоса газа, произведена дегазация выработанного пространства, отмечено расстояние начала замера газообильности, замерена газообильность выработок, примыкающих к выработанному пространству, определена допустимая газообильность, определена величина относительного коэффициента эффективности дегазации и произведено выполнение условий, обеспечивающих нормальное ведение горных работ.

Формула изобретения

Способ дегазации выработанных пространств шахтных полей, включающий проходку оконтуривающих выемочный столб выработок, принятие расстояния от монтажной камеры до первой скважины, равным шагу посадки основной кровли, а на оставшейся части длины выемочного столба расстояние, равным двум-трем шагам посадки кровли, бурение скважины, чтобы она пересекала разрабатываемый пласт и углублялась на 3 5 м в породы почвы, производство инклинометрической съемки перед обсадкой скважины, обсадку скважины колонной стальных перфорированных труб диаметром не менее 100 мм, чтобы ее нижний конец располагался не ниже 3 5 м над кровлей пласта, герметизацию скважины от поверхности на расстояние не менее 10 м, утепление устья скважины, подвигание забоя, подключение скважины к устройству отсоса газа, отличающийся тем, что бурят скважины в установленные естественные зоны повышенной трещиноватости горного массива, для чего размечают вдоль всей длины оконтуривающих выработок геофизические пикеты с шагом, обеспечивающим необходимую глубину контроля трещиноватости массива, определяют наличие зон повышенной естественной трещиноватости в массиве методом радиоволнового зондирования и при наличии зон в выемочном столбе замеряют протяженность выемочного столба, ширину и число указанных зон трещиноватости в пределах столба, расстояние между ними и до выработок замеряют углы ориентации зон относительно осей оконтуривающих выработок в плоскости пласта и по мощности массива, располагают последующую ближайшую скважину так, чтобы она находилась в начале зоны повешенной трещиноватости от монтажной камеры, после чего подключают скважину к устройству отсоса газа с возможностью изменения вакуума, отмечают расстояние начала замера газообильности, равное шагу обрушения пород кровли до скважины, пробуренной в зоне повышенной трещиноватости и после нее, замеряют газообильность выработок, примыкающих к выработанному пространству, фактическую без дегазации и с дегазацией, допустимую газообильность выработок, примыкающих к выработанному пространству по факту вентиляции без дегазации, сравнивают значения, определяют относительный коэффициент эффективности дегазации и поддерживают его на требуемом уровне путем регулирования вакуума и изменения расстояний между скважинами.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к горной промышленности и может быть использовано для предотвращения загазирований рудничной атмосферы в вентиляционных сетях

Изобретение относится к подземной разработке пологонаклонных угольных пластов

Изобретение относится к горному делу, в частности к проблеме дегазации угольных пластов

Изобретение относится к горной промышленности и может быть использовано при дегазации выбросоопасных и газоносных пластов, а также выработанных пространств

Изобретение относится к горному делу и может быть использовано при дегазации выбросоопасных пластов

Изобретение относится к горнодобывающей промышленности и может быть использовано для определения газоносности калийных рудников до их разработки

Изобретение относится к горной промышленности и предназначено для дегазации угольных пластов и выработанного пространства

Изобретение относится к горной промышленности и может быть использовано для борьбы с газовыделением при отработке высокогазоносных угольных пластов пологонаклонного залегания с прямоточной схемой проветривания с подсвежением исходящей струи выемочного участка

Изобретение относится к горной промышленности, а именно к подземной добыче угля

Изобретение относится к горной промышленности и может быть использовано для разгрузки от горного давления, защиты и дегазации выбросоопасных и газоносных пластов

Изобретение относится к горному делу и может быть использовано при дегазации углепородного массива через скважины или шпуры на подземных горных выработках

Изобретение относится к угольной промышленности и может быть использовано при добыче метана как для его промышленного использования, так и для дегазации разрабатываемых угольных пластов

Изобретение относится к горной промышленности и может быть использовано для извлечения метана из угольного пласта

Изобретение относится к угольной промышленности и может быть использовано при разработке угольных месторождений, содержащих пласты, опасные по внезапным выбросам и горным ударам

Изобретение относится к горному делу и может быть использовано при дегазации угольных пластов месторождений, которые могут быть отработаны в дальнейшем традиционными способами; месторождений, которые залегают в сложных горно-геологических условиях и являются источником метана с целью его каптирования и дальнейшего потребления, а также месторождений непосредственно не связанных с добычей угля

Изобретение относится к горной промышленности и может быть использовано для борьбы с газом и газодинамическими явлениями в шахтах
Наверх