Способ получения композиционных проводников на основе высокотемпературной сверхпроводящей висмутовой керамики в серебряной оболочке

 

Изобретение относится к высокотемпературной сверхпроводимости и может быть использовано для получения одножильных и многожильных композиционных проводников на основе керамики (Bi, Pb)(2)Sr(2)Ca(2)Cu(3)O(y) с высокими сверхпроводящими свойствами. Сущность изобретения: композиционную заготовку деформируют, а затем подвергают термомеханической обработке. При этом до деформации или в промежутке между деформациями производят дополнительную термообработку композиционной заготовки в интервале температур 780 - 815oC в течение не менее 10 ч. Способ улучшает сверхпроводящие свойства проводников. Плотность критического тока, измеренная при температуре жидкого азота, увеличивается в зависимости от конструкции проводника в 5 раз. 1 табл.

Изобретение относится к высокотемпературной сверхпроводимости и может быть использовано для получения одножильных и многожильных композиционных проводников на основе керамики (Bi, Pb)(2)Sr(2)Ca(2)Cu(3)O(y)-(Bi-2223) с высокими сверхпроводящими характеристиками.

Известен способ получения многожильных композиционных проводников в серебряной оболочке на основе керамики Bi-Pb-Sr-Ca-Cu-O, при котором совмещением способов электрофореза и jelly-roll [1] заключающегося в намотке исходной ленточной заготовки Ag/Bi-2223(Ag/Bi-2223/Ag) в спираль, получают прекурсор, упаковывают его в серебряную оболочку и деформируют полученную композиционную заготовку. Полученный проводник термообрабатывают при температуре (T) 830oC в течение 24 ч и охлаждают в печи до комнатной температуры.

Наиболее близким к предлагаемому техническому решению является способ получения многожильных композиционных проводников в серебряной оболочке на основе керамики Bi-2223, при котором совмещением способов "порошок в трубе" и jelly-roll получают прекурсор, упаковывают его в серебряную оболочку и деформируют (экструзией) при 840oC с диаметра 8 10 мм до диаметра 2 4 мм. Полученный проводник подвергают термотехнической обработке (ТМО) при 840oC в течение общего времени 100 300 ч. Максимальное значение плотности критического тока при температуре жидкого азота в нулевом магнитном поле (jk(N2,O Тл)) у проводников, полученных по описанному способу, составило 3200 А/см2 [2] прототип.

Основным недостатком этого способа является плохая геометрия керамической сердцевины и низкое качество границ раздела керамика-серебро, что отрицательно сказывается на условиях формирования фазы Bi-2223 и не может обеспечить высокий уровень критических токов.

Сущность изобретения состоит в том, что в способе получения композиционных проводников на основе высокотемпературной сверхпроводящей висмутовой керамики в серебряной оболочке, включающем получение композиционной заготовки, ее деформацию и ТМО, перед деформацией композиционной заготовки или в процессе этой деформации, между стадиями деформации, проводят дополнительную термообработку в интервале температур 780 815oC в течение не менее 10 ч. Деформацию проводят либо экструзией, либо ковкой, либо волочением, либо прокаткой, либо сочетанием этих способов.

На стадии получения композиционной заготовки Bi-керамика/Ag в серебряную оболочку герметично упаковывают прекурсор. В качестве прекурсора используют либо составную композиционную заготовку, полученную совмещением способов "порошок в трубе" и jelly-roll (многожильная конструкция проводника), либо порошок Bi керамики (одножильная конструкция проводника).

На стадии получения композиционной заготовки Bi-керамика/серебро, во время изготовления прекурсора и его упаковки в серебряную оболочку в порошке накапливаются неравномерно распределенные напряжения. Проведение дополнительной термообработки на воздухе в интервале температур 780 - 815oC в течение не менее 10 ч до деформации (или между деформациями) способствует более равномерной релаксации внесенных напряжений в порошкообразную сердцевину и, следовательно, устранению причин появления крупных трещин, которые, как показал опыт, трудно залечиваются при последующих термообработках в процессе ТМО. Снятие напряжений ведет к улучшению геометрии сердцевины и улучшению качества поверхности раздела керамика-серебро (улучшается гладкость границы раздела), на которой при последующей ТМО начинается рост сверхпроводящей фазы Bi-2223. Кроме того, в процессе дополнительной термообработки вероятно образование несверхпроводящих фаз необходимого состава, находящихся в жидком состоянии при рекомендуемых температурных режимах. Их наличие позволяет при последующих термообработках, в процессе ТМО, залечивать образовавшиеся дефекты микроструктуры.

Таким образом, дополнительная термообработка выполняет двуединую задачу: с одной стороны, исправляют дефекты микроструктуры, заложенные в проводник на начальных этапах его изготовления, с другой стороны, создает условия, благоприятные для последующего (при ТМО) направленного роста сверхпроводящей фазы Bi-2223 в объеме керамической сердцевины, что ведет к увеличению плотности критического тока до 5 раз.

Проведение дополнительной термообработки на воздухе при температуре ниже 780oC не приводит к увеличению токонесущей способности проводников, так как при T <780C не происходит образование несверхпроводящих фаз необходимого состава.

Увеличение температуры дополнительной термообработки на воздухе выше 815oC не целесообразно, так как выше этой температуры происходит заметный рост фазы Bi-2223, что не желательно, так как при последующих деформациях, входящих в ТМО, происходит дробление кристаллов фазы Bi-2223 и появление дополнительных трещин.

Проведение дополнительной термообработки в течение менее 10 ч не приводит к увеличению токонесущей способности проводников из-за диффузионных ограничений процессов образования несверхпроводящих фаз, их расплавления и залечивания трещин.

Влияние дополнительной термообработки на увеличение токонесущей способности было проверено на одножильных и многожильных проводниках. Композиционные проводники различных конструкций на основе высокотемпературной сверхпроводящей Bi керамики в серебряной оболочке получали в несколько стадий.

В случае одножильной конструкции керамический порошок состава Bi(2-x)Pb(x)Sr(2)Ca(2-y)Cu(3-y)O(z), где 0<x<0,4; 0<y<1, содержащий фазу Bi(2)Pb(0,4)Sr(2)Ca(1)Cu(2)O(z)-Bi-2212 в количестве 10 90% оксиды и купраты отдельных элементов герметично упаковывали в серебряную оболочку. Затем полученную композиционную заготовку деформировали экструзией с диаметра 10 мм до диаметра 4 мм при 270 400oC, проводили дополнительную термообработку на воздухе при 780 и 815oC в течение 10 и 20 ч при каждой темтературе. Далее проводник прокатывали до толщины 0,3 0,1 мм и подвергали ТМО с 2 3 промежуточными прессованиями при 820 880oC в течение общего времени 100 300 ч.

В случае многожильной конструкции керамический порошок состава Bi(2-x)Pb(x)Sr(2)Ca(2-y)Cu(3-y)O(z), где 0<x<0,4; o<y<1, содержащий фазу Bi-2212 в количестве 10 90% оксиды и купраты отдельных элементов герметично упаковывали в промежуточную серебряную оболочку, затем промежуточную композиционную заготовку прокаливали в ленту. Ленту с керамической сердцевиной накручивали на стержень, полученный прекурсор помещали в серебряную трубку и герметично упаковывали. Составную композиционную заготовку подвергали дополнительной термообработке на воздухе при 780 и 815oC в течение 10 и 20 ч при каждой температуре. Далее проводили экструзию с диаметра 10 мм до диаметра 2 4 мм при температуре 320 420oC и термомеханическую обработку с 2 3 промежуточными прессованиями при 820-880oC в течение общего времени 100 300 ч.

В случае многожильного проводника использовали деформацию не только экструзией, но и волочением с диаметра 10 мм до диаметра 2,5 4 мм (10% деформации за проход), и дополнительную термообработку, на воздухе при 780 и 815oC в течение 10 и 20 ч при каждой температуре проводили до волочения.

В таблице представлена критическая плотность тока, Jk(N2, O Тл), проводников, полученных по описанному выше способу и способу-прототипу. Из представленных в таблице данных видно, что введение дополнительной термообработки на проводниках одножильной конструкции позволило увеличить Jr(N2) в 5 раз. Введение дополнительной термообработки на проводниках многожильной конструкции позволило увеличить Jk(n2) на 200 450 А/см2. Более низкий уровень значений Jk(N2) на многожильных проводниках объясняется комплексом причин, связанных с их конструктивными особенностями.

Формула изобретения

Способ получения композиционных проводников на основе высокотемпературной сверхпроводящей висмутовой керамики в серебряной оболочке, при которой получают композиционную заготовку, производят ее постадийную деформацию и термомеханическую обработку, отличающийся тем, что перед деформацией или между ее стадиями композиционную заготовку дополнительно термообрабатывают на воздухе в интервале температур 780 815oС в течение не менее 10 ч.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к технической сверхпроводимости, в частности к технологии получения длинномерных композиционных сверхпроводников на основе высокотемпературных сверхпроводящих соединений, предназначенных для создания электротехнических устройств

Изобретение относится к неорганической химии, в частности к керамическому материалу и способу его получения, пригодному для применения в рентгенологии и может быть использовано в качестве рентгеноконтрастного вещества для диагностики гортани, трахеи, бронхов, полостных образований, пищеварительного тракта, мочевых и желчных путей, а также для получения люминофоров, активных сред лазеров, пигментов и т.п

Изобретение относится к неорганической химии, в частности к керамическому материалу и способу его получения, пригодному для применения в рентгенологии и может быть использовано в качестве рентгеноконтрастного вещества для диагностики гортани, трахеи, бронхов, полостных образований, пищеварительного тракта, мочевых и желчных путей, а также для получения люминофоров, активных сред лазеров, пигментов и т.п

Изобретение относится к способу получения слоистых фаз высокого давления состава Sr1-xZnxCuO2 (Zn - Pr, Nd), которые могут быть использованы в энергетике, различных приборах электронной, измерительной и вычислительной техники в качестве высокотемпературного сверхпроводящего материала с Tс 45 K

Изобретение относится к составам для горячего ремонта кладки печей методом самораспространяющегося высокотемпературного синтеза и может быть использовано в металлургической, коксохимической и других отраслях промышленности

Изобретение относится к огнеупорной промышленности, в частности к технике изготовления и эксплуатации карбидкремнийсодержащих огнеупоров, и может быть использовано при изготовлении фасонных огнеупорных изделий, в том числе плавильных тиглей, а также сопл, насадок, защитных кожухов, литейных воронок и других, работающих в контакте с расплавами металлов на основе никеля или кобальта

Изобретение относится к области военной техники и может быть использовано в конструкциях, требующих высокой механической прочности, в частности в бронезащитных конструкциях

Изобретение относится к производству керамических материалов, а именно к получению корундовой керамики с повышенным коэффициентом интенсивности напряжений и ресурсом работы при ударных нагрузках, и может быть использовано при изготовлении керамических узлов оборудования, работающих в условиях интенсивной вибрации, высокоэнергетических воздействий ударно-взрывного характера

Изобретение относится к производству керамических материалов, а именно к получению корундовой керамики с повышенным коэффициентом интенсивности напряжений и ресурсом работы при ударных нагрузках, и может быть использовано при изготовлении керамических узлов оборудования, работающих в условиях интенсивной вибрации, высокоэнергетических воздействий ударно-взрывного характера

Изобретение относится к производству периклазсодержащих порошков для огнеупорных изделий основного состава

Изобретение относится к производству керамических материалов, а именно к получению корундовой керамики, используемой при изготовлении керамических узлов оборудования, устойчивых к износу, воздействию агрессивных сред и высоким статическим разрушающим нагрузкам

Изобретение относится к производству керамических материалов, а именно к получению корундовой керамики, используемой при изготовлении керамических узлов оборудования, устойчивых к износу, воздействию агрессивных сред и высоким статическим разрушающим нагрузкам
Изобретение относится к керамическим материала и может быть использовано при изготовлении тепловых агрегатов, огнеприпаса, подставок для обжига керамики и т.д

Изобретение относится к способу получения тугоплавкого соединения титана, которое может быть использовано в металлообрабатывающей и химической промышленности

Изобретение относится к области технологии производства керамических изделий и может быть использовано, например для изготовления керамических изоляторов для свечей зажигания

Изобретение относится к составу кладочного раствора повышенной термостойкости, химической стойкости, с высокой адгезионной прочностью и прочностью на срез
Изобретение относится к фрикционным спеченным материалам, применяемым в фрикционных и тормозных устройствах автомобилей, тракторов, самолетов и т.п

Изобретение относится к области электротермии, в частности к способам обработки керамических изделий в электропечах
Наверх